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3. Ensemble method
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Motivation and Background

= Wind power intermittency
creates significant barriers to
expanding utilization

- Ramp events
. Spinning reserve

= Better forecasting and
optimized economic dispatch
can alleviate these barriers

- Ensemble forecasts
. Stochastic programming

- Dynamic reserves
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Motivation and Purpose

1. In some onshore area around Bohali Sea, it is challenging to
forecast wind due to the lack of observations in this maritime
region

2. Initial conditions need to be improved, especially given the
quality of background field

3. Ensemble Kalman filter (EnKF) data assimilation could be used
for the real-time experiment.

4. Experiments combined with ensemble sensitivity (ES) analysis
and EnKF data assimilation are employed to test forecast
performance.

5. Statistical methods should be considered to decrease the
forecast bias like root mean square error (RMSE) with little
computing cost in operational wind forecast for wind farms
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Introduction and Background
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Dagang wind farm forecasting problems
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NWP (WRF-ARW) over predicts wind speed, especially during down ramps
= WSM-5 microphysics

= RRTM long-wave and GSFC short-wave radiation

= MYNN 2.5 level TKE PBL
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3DVAR Data assimilation improves initial conditions with
limited wind tower and PREPBUFR data
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= Example experiments for 11 November 2012 with 15 minute output (96 per day)

= With and without DA using different data
= Met tower measurements are at 70m for comparison

| © Copyright IBM Corporation 2014



Ensemble forecast with 10 members (perturbed initial conditions)
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No obvious improvement with ensemble mean
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Kalman Filter

Model run length
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Fig. 3. Schematisation of the Kalman filtering procedure. Model outputs valid at 00 UTC (corresponding to a forecast horizon of +12 h), marked by circles, are adjusted by
comparing forecasts and observations at the same time on the previous days (7 = 24 h).
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* Louka P, Galanis G, et al., Improvements in wind speed forecasts for wind power prediction purposes using Kalman
filtering, Journal of Wind Engineering and Industrial Aerodynamics, 2008;96(12):2348-62.
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3DVAR ensemble hybrid

= Improved results for the first 48 hours
= Fail to pick up ramp event
= Very limited improvement beyond 48 hours
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Daily RMSE before and after KF method applied for Oct. 2012
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Monthly mean RMSE decreased from 2.45 to 2.26m/s
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Conclusions and future work

= On-shore wind forecasts in Bohai Sea area have been
challenging

= Hydrid DA helps improve the forecast in this region, but large
errors remains

= KF method can decrease RMSE and help to improve forecast with
little computing cost

= More observations from other sources will be considered in
addition to the use of SRTM-based model orography, MODIS-
based land use data and 1km-resolution JPL SSTs as we have

used for wind power forecasting on archipelagos with complex
terrain
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