

Contributions of Interstate Transport of Air Pollutants to Air Pollution-related Mortality in the Mid-Atlantic U.S.

Xiangting Hou and Kuo-Jen Liao Department of Environmental Engineering, Texas A&M University-Kingsville

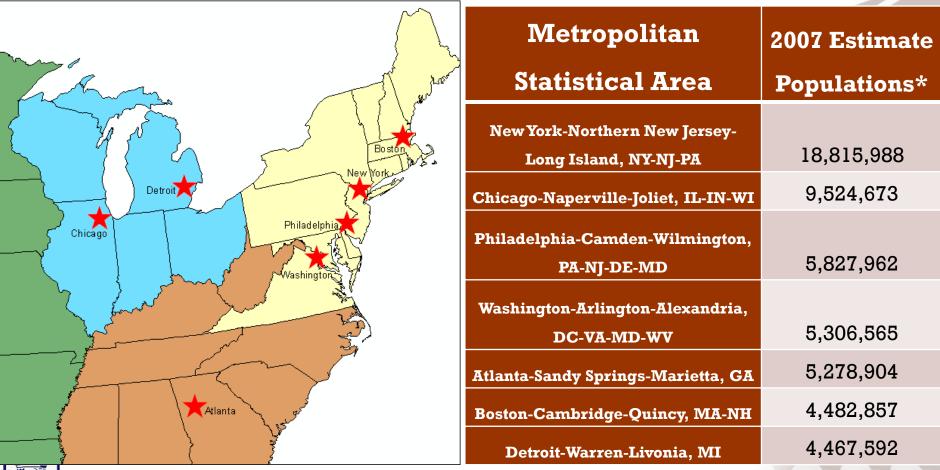
Overview

- Background
- Methods
 - Study interest
 - Health impact function
 - Data inputs
- Results and Discussion
 - Modeling evaluation
 - Sensitivity analysis
 - Ozone-related premature mortality reporting
- Summary
- Acknowledgements

Background

- Exposure to ground-level ozone could cause adverse human health effects
- Ground-level ozone is created by chemical reactions of NOx and VOCs in the presence of sunlight
- A 10-ppb increase in the previous week's ozone concentrations is associated with a 0.52% increase in daily mortalities (<u>Bell Ml, 2004</u>)
- In some cases, NOx reductions in one hemisphere could led to long-term increases in mortalities in the opposite hemisphere (<u>West et al., 2009</u>)

Methods


Health Effect Function (or C-R Function)

$$\Delta \mathbf{y} = y_0 \big(1 - e^{-\beta \Delta x} \big) P O P$$

- y_0 = baseline incidence rate of the health outcome
- β = coefficient of association between ozone concentration and health outcome
- Δx = the estimated air pollution change
- POP = the size of exposed population
- Δy = the estimated change in the health outcome due to the change in ozone exposure

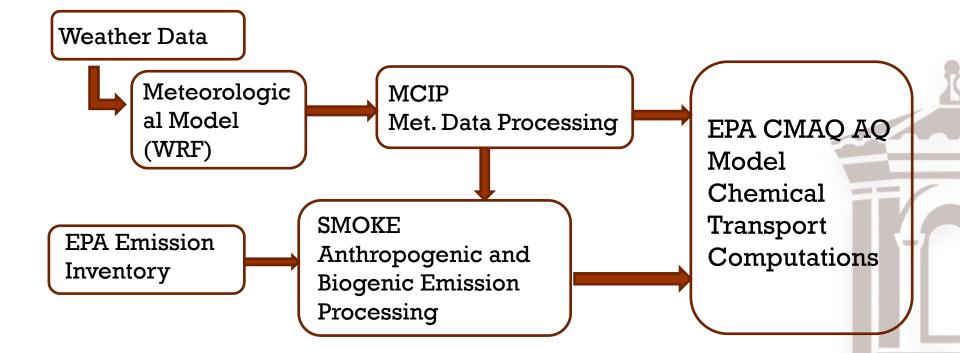

Major Cities in the Eastern U.S.

Figure 1. Modeling study domain, four emission regions (i.e., Central Regional Air Planning Association (CENRAP)(Green), Lake Michigan Air Directors Consortium (LADCO) (Blue), Ozone Transport Region (OTR) (Yellow), Southeastern Modeling, Analysis, and Planning (SEMAP) regions (Orange)

* http://www.census.gov/popest/data/historical/2000s/vintage_2007/metro.html

EPA CMAQ was used to calculate Daily Maximum 8-Hour Ozone Concentration as well as ZOC for the sensitivity analysis

Feature	Description
Air Quality Model	U.S. EPA CMAQ-DDM v4.7.1
Meteorological Mode	1 WRF
Emission Model	SMOKE
Horizontal Resolution	12*12 km
Vertical Layer	34 Layers
Simulation Period	May 25th ~ August 31st, 2007

Data Inputs: Contribution of
Emissions to Ozone Air Pollution
ZOC (zero-out source contribution) to estimate the

overall air pollution related risk by multi-pollutant emissions reduction (<u>Cohan et al., 2005</u>).

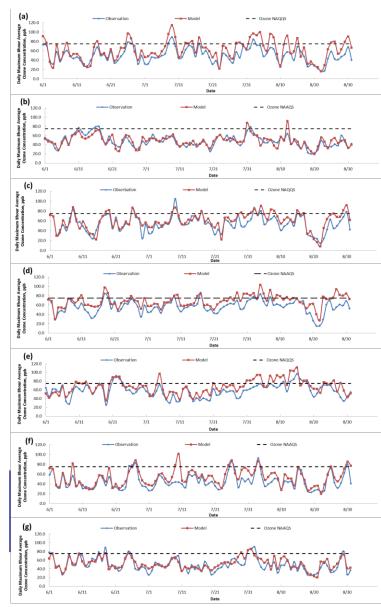
$$ZOC(E_i, E_j) = \left(S_i^{(1)} - \frac{1}{2}S_{i,i}^{(2)}\right) + \left(S_j^{(1)} - \frac{1}{2}S_{j,j}^{(2)}\right) - S_{i,j}^{(2)}$$

First-order sensitivities: $S_i = \frac{\partial C}{\partial E_i}$, $S_j = \frac{\partial C}{\partial E_i}$

pollutant concentrations (C) to source emissions i (E)

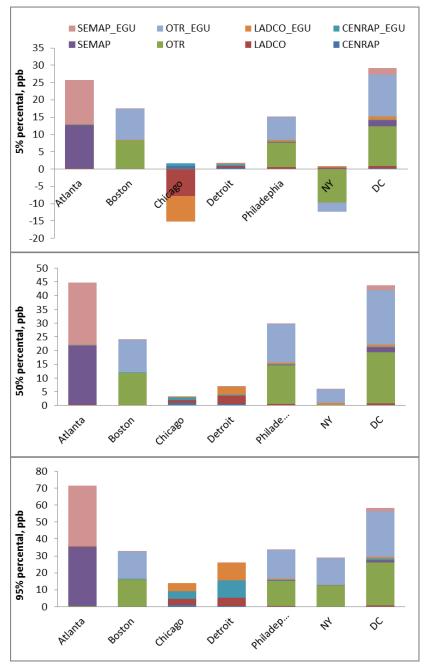
• Second-order: $S_i^{(2)} = \frac{\partial^2 C}{\partial E_i^2}$, $S_j^{(2)} = \frac{\partial^2 C}{\partial E_i^2}$, $S_{i,j}^{(2)} = \frac{\partial^2 C}{\partial E_i \partial E_j}$

Anthropogenic NOx and VOC emissions as the main ozone precursors



Data Inputs: C-R Function and Health Data

	Health	Age	Acute of Chronic	Effect		Study	Source of			
CR Function	Effect	Group	Exposure Metric	Estimate		Location	Effect Estimate			
	Non-	A11	Acute	0.261% inc		95 US	Bell et al. 2004			
	Accidental	ages	Daily 8-hour	mortality per 10 ppb increase in ozone level		urban				
	Premature		maximum			cities				
	Mortality			over the p	revious week					
	N	e <mark>w York</mark>	*		Pop Prop	ortion* M	lortality Rate			
MSA-specific		ge Grou	p Population	Death	(per 100 people in summer tim					
Monthly course	ntv_1	< 1 year	251056	302	0.001605018					
-	_	-4 years	980622	28		0.000148	81			
rate in summe		14 year		50		0.000265731				
obtained from		-24 yea:		104		0.000552	721			
Discoso Contr	a^{25}	-34 yea:	s 244443	244443 244 0.00129						
Disease Contr	35	-44 yea	s 2922840	774		0.004113	523			
WONDER data	ibase 45	-54 yea:	s 2798932	2024		0.010756	81			
- Tara unaimhta	55	-64 yea:	s 2061471	3298		0.017527647				
Age-weighte	05	-74 yea:	s 1232706	4748		86				
per 100 peop	le in 75	-84 yea:	s 827942	8449	0.044903302 0.051737916					
	8	5+ year	360934	9735						
					Age-weighted mortality rate (per					
KINGSVILLE					100 people in summer time)					
		Total	18815988	29756		0.158142	108			


*http://www.census.gov/popest/data/historical/2000s/vintage_2007/metro.html

Modeled and Observed Ozone Air Quality

- Observed daily ozone concentrations were used to compare with the CMAQmodeled daily maximum 8-hour ozone concentrations.
- Observations of ozone concentrations were retrieved from the U.S. EPA's Air Quality System (AQS)
- 5-by-5 grid cells in the urban areas
- 5th, 50th, 95th percentiles were selected to represent the low, base, high scenarios
- DM8-hour ozone concentrations in (a)NYC and (d) DC were overestimated.

Figure 2. Time series for modeled and observed Daily Maximum 8-hour Average Ozone concentrations during the 2007 summer for (a)New York-Northern New Jersey-Long Island, NY-NJ-PA, (b)Chicago-Naperville-Joliet, IL-IN-WI, (c)Philadelphia-Camden-Wilmington, PA-NJ-DE-MD, (d)Washington-Arlington-Alexandria, DC-VA-MD-WV, (e)Atlanta-Sandy Springs-Marietta, GA, (f)Boston-Cambridge-Quincy, MA-NH and (g)Detroit-Warren-Livonia, MI.

- ZOC in this study refers to estimate the effect on ozone concentration of removing anthropogenic NOx and VOC emissions.
- A positive ZOC corresponds to an ozone decrease at a receptor upon removal of the source interested.
- The impact of anthropogenic NOx and VOC emissions reduction on high level concentrations more obvious.

Figure 3. Three scenarios of zero-out source contribution to 5% (top), 50% (middle), and 95% (bottom) percentiles of 8hour ozone

2

MSA Specific Estimated Changes of Ozone-Related Premature Mortality (no. of incidence) (Mean Estimates and 5th and 95th Percentiles of Confidence Levels)

	Atlanta		Atlanta Boston		Chicago			DC		Detroit		New York			Philadelphia		phia				
	5^{th}	50 th	95 th																		
Total	33	86	134	48	65	78	-62	14	33	62	94	118	5	16	39	-27	74	276	45	105	125
CENRAP	1	1	1	0	0	0	4	5	5	1	1	1	2	2	2	1	1	1	1	1	1
LADCO	1	1	1	1	2	1	-35	1	10	3	3	3	0	6	11	7	7	6	4	4	4
OTR	2	1	1	19	27	33	0	0	0	15	32	45	1	1	1	-75	-12	100	10	37	47
SEMAP	11	38	64	1	1	1	1	0	0	7	7	6	1	1	1	10	10	11	5	5	4
CENRAP	,	,	,	0	0	0	_	_	_	,	,	,	0	0	0	,	0	,	,	,	,
_EGU LADCO	T	1	1	0	0	0	5	5	5	T	T	1	2	2	2	1	2	1	1	T	1
_EGU	1	1	1	2	2	2	-37	1	12	4	4	4	-2	3	20	10	10	10	5	5	5
OTR																					
_EGU	2	2	2	23	31	38	0	0	0	24	40	53	1	1	1	9	47	138	15	48	59
SEMAP																					
_EGU	15	41	63	1	2	1	1	1	1	8	7	7	1	1	1	9	10	10	5	5	5
					4																

Summary

- Sensitivity analysis is useful for estimating the contribution of transported air pollutants to peak ozone formation and premature mortality incidences.
- Reductions in cross-region transport of emissions could decrease ozone-related mortalities in MSAs in the eastern U.S.
- The mortality results for NYC and DC could be overestimated since ozone concentrations were over-predicted in those two cities.
- The method and results used in this study can be applied to develop effective regional air quality management strategies that protect human health.

Acknowledgement

This work was supported by the U.S. EPA STAR grant R835218, and the Maryland Department of the Environment for providing meteorological and emission data used in air quality modeling.

The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this study. URL: <u>http://www.tacc.utexas.edu</u>

The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the EPA or other agencies.

kuo-jen.liao@tamuk.edu