Spencer ${\rm Hill}^1$ and ${\rm Yi}\;{\rm Ming}^{2,1}$

1. Princeton University Program in AOS 2. NOAA Geophysical Fluid Dynamics Laboratory

Forced changes to regional tropical rainfall remain poorly constrained

Cool colors=wettening. Warm colors=drying. Stippling=confident. Hatching=not confident. DJF shown; similar story year-round.

...despite confidence in δT and well-developed theories linking δT with δP

AR5

Stippling=confident. (AR5 is now annual mean)

Mean *T* change: "rich-get-richer"; Hadley cell expansion e.g. *Chou & Neelin 2004, Held & Soden 2006*

Spatial pattern change: "warm-get-wetter"; ITCZ shift towards warmer hemisphere e.g. *Ma & Xie 2013, Frierson & Hwang 2012*

Prescribed SST AGCM simulations can untangle mean and spatial pattern effects

For example, δT induced by historical aerosol emissions: (as simulated by GFDL AM2.1-slab ocean)

Triplet of AGCM experiments, one for each SST anomaly field c.f. *Ma & Xie 2013*

Methodology & Validation: Idealized SST perturbation experiments in GFDL AM2.1, AM3, and HiRAM

Zonal mean response: "Rich-get-poorer" and ITCZ movement, but model dependence re: when/how much

Methodology & Validation: Idealized SST perturbation experiments in GFDL AM2.1, AM3, and HiRAM

Zonal mean response: "Rich-get-poorer" and ITCZ movement, but model dependence re: when/how much

A trio of prescribed SST experiments clarifies the mechanisms involved

Equilibrium SST anomalies taken from slab ocean-AM2.1 ("SM2.1") simulations: PI atmos except PD aerosols Compare to PI control; from *Ming & Ramaswamy 2009*

Add these anomalies to climatological observed SSTs and use to drive AGCM Same annual cycle repeated each year

Previous work: use to investigate meridional energy fluxes *Hill et al 2014*

Identical trio in 3 GFDL AGCMs to identify robust features

AM2.1*: CMIP3 generation

*with aerosol cloud interactions

AM3: CMIP5 generation

Same resolution; improved physics

HiRAM: high resolution

At cost of simplified physics

AM2.1 replicates zonal mean δP from its parent SM2.1 aerosol experiment

Throughout annual cycle

At least to 1st order

ITCZ southward shift clear As expected

Justifies focus on AGCM runs At least for zonal mean δP

Zonal mean δP is linear to mean/spatial pattern decomposition year-round

At least to 1st order Some exceptions

So can think of mean and pattern change separately Then just add them up

Sum of δP annual cycle in aerosol mean and spatial pattern experiments.

Methodology & Validation: Idealized SST perturbation experiments in GFDL AM2.1, AM3, and HiRAM

Zonal mean response: "Rich-get-poorer" and ITCZ movement, but model dependence re: when/how much

Mean cooling drives "rich-get-poorer" strongest in AM2.1

Tropical mean SST anomaly from SM2.1 = -1.1 K Recall: applied at every ocean gridpoint

Thermodynamic scaling theory: mostly drying, esp. at ITCZ Since $\delta \overline{T} < 0$

Seems to hold in AM2.1, especially in JAS Weaker in AM3 and HiRAM

SST spatial pattern pushes ITCZ south weakest during JAS

Strongest magnitudes in HiRAM Weakest in AM2

ITCZ shift weaker in JAS Esp. in HiRAM

Full case: models differ in JAS due to both mean and pattern differences

ITCZ shift weaker in JAS for AM3 and HiRAM Less seasonal variation in AM2.1

Model differences stem from both mean and spatial pattern Compensate each other in AM2.1

Why does uniform cooling yield strong JAS δP in AM2.1 only? Not obviously traceable to climatological P differences

Methodology & Validation: Idealized SST perturbation experiments in GFDL AM2.1, AM3, and HiRAM

Zonal mean response: "Rich-get-poorer" and ITCZ movement, but model dependence re: when/how much

Model responses to uniform δT differ over Sahel and elsewhere

Known result for uniform warming Held et al 2005

Strong wettening in AM2.1 Slight drying in AM3; weak/mixed in HiRAM

AM2.1: also weakening of Asian monsoons Dipole there drives zonal mean

Sahel dries in response to spatial pattern in all three models

Despite very different behavior elsewhere

E.g. intense wettening of NW equatorial Pacific in HiRAM

Southward shift of Atlantic ITCZ

Extends over land to Sahel

Full case: AM2.1 doesn't match SM2.1 over Sahel

SM2.1, like AM3 and HiRAM, says mild Sahel drying Despite agreeing on drying of nearby Atlantic ITCZ

Methodology & Validation: Idealized SST perturbation experiments in GFDL AM2.1, AM3, and HiRAM

Zonal mean response: "Rich-get-poorer" and ITCZ movement, but model dependence re: when/how much

Response to SST spatial pattern changes more model robust than to mean cooling/warming

System must compensate for NH cooling relative to SH

Hill et al 2014: can only be accomplished via ITCZ movement

True irrespective of model details

Whereas unifom -1.1K more subtle energetically: model idiosyncracies can run wild

Obvious next question: Why such disagreement over uniform δT ? Or do we just ignore the AM2.1 behavior?

Contact: **spencerh@princeton.edu** Manuscript in prep for *GRL* and available soon at my website

Thanks for useful discussions: Leo Donner, Isaac Held, Gabriel Lau

