

Assimilation of GOES satellite based convective initiation data into the P 752 Rapid Refresh and HRRR systems to improve aviation forecast guidance

Tracy Lorraine Smith^{1,2}, S. S. Weygandt¹, C. R. Alexander^{1,3}, M. Hu^{1,3}, H. Lin^{1,2}, J. R. Mecikalski⁴ ¹NOAA/ESRL/GSD Assimilation and Modeling Branch ²Cooperative Institute for Research in the Atmosphere, Colorado State University ³Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder ⁴University of Alabama in Huntsville

-5K change over 15 minutes hours and over the Eastern U.S. Qualitative assessment encouraging,

Later in the afternoon, using the lower bound of -3K turned out to be the better choice for CSI, but still has a greater FAR than either of the other runs. Future assimilation of the data will use additional GOES-R CI algorithm fields to help refine the areas of interest and reduce the FAR while keeping the POD.

July 2	2012 CNTL CTCR -3 CTCR -5	1h forecasts 8 July
		III IOIECasis o Suly
	tempt CSI for BAB Jul2012 withssteast 13km EUS ran 35dB7 All runs 2012.0	dBz CNTL -3 -5
runs 2012-07-04 thri	\times CSI for RAP_Jul2012_ctrl_13km, EUS rgn, 35dBZ, All runs 2012-07-04 thr	20 0 152 0 135 0 160
	~ [*]	20 0.132 0.135 0.100
	0 ×	25 0.129 0.116 0.144
	$\widehat{\mathbf{T}}_{\mathbf{r}}$	30 0.087 0.084 0.105
		35 0.007 0.008 0.011
	Ĩ [™]	3h forecasts 8 July
	ő –	dBz CNTL -3 -5
	Σ	20 0 109 0 108 0 109
	O ∾	25 0.089 0.088 0.085
		30 0.058 0.057 0.056
<u></u>		35 0.003 0.010 0.007
0	0.0 4.0 8.0 12.0	
30dBZ, All runs 2012-(Hias for RAP_Jul2012_withsatcast_13km, EUS rgn, 35dBZ, All runs 2012-0	1h forecasts 8 July
All runs 2012-07-04 th	Has for RAP_Jul2012_ctrl_13km, EUS rgn, 35dBZ, All runs 2012-07-04 the	dBz CNTL -3 -5
		20 1.1105 1.3925 0.7894
	$\widehat{\mathbf{n}}^{\widetilde{\mathbf{n}}}$	25 1,1994 1,4351 0,7621
		30 0 8751 1 0069 0 4891
<u>+</u>		
		35 0.1012 0.1700 0.0650
		2h forecesto 9 July
	\$ 9 × 6	
		dBz CNTL -3 -5
		20 1.2329 1.4638 1.2716
	× × × ×	25 1.2545 1.4888 1.3452
		30 0.7801 1.0309 0.8969
2.0	Forecast Length (Hr)	35 0 1134 0 1680 0 1457
		$\overline{\mathbf{U}}$

Looking at additional CI indicator fields from UAH to improve CI detection and reduce noise

Have used two values of CTCR as a lower bound, -3K and -5K change over 15 minutes, could look at other values When time and computer resources allow, the data will be implemented in the 3km HRRR, which should be a better fit for this high resolution data source **Planned implementation into parallel test** versions of the RAP and HRRR at ESRL

CIRES Cooperative Institute for Research in Environmental Sciences

SUMMARY and FUTURE WORK

Preliminary evaluation of impact from assimilation shows sensitivity to the **CTCR** values