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•	 Relating a change in forecast uncertainty (variance) to changes in 
initial conditions via assimilating additional observations from “tar-
geted” regions
•	 Target regions are determined by a maximum reduction in forecast 
variance  

•	 Variance reduction is positive-definite
•	 More observations reduce uncertainty
•	 Has been applied on synoptic scales (Torn and Hakim 2008) but can 
it translate to the meso- and convective scales where non-linearity is 
large?
•	 Errors in the position of drylines and subsequent convective initia-
tion has shown to be prevalent amongst mesoscale forecasts (Coffer et 
al. 2013)
•	 An example of targeted regions for 2-m temperature, dewpoint, and 
specific humidity can be seen in Figure 1 to improve a 24-hr forecast 
of max reflectivity in north Texas
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Figure 1. Estimated variance reduction of max column reflectivity (dBZ2) at forecast hour 24 in north-central Texas by assimilating 
(a) 2-m temperature (K), (b) 2-m dewpoint (K), and (c) 2-m specific humidity (g kg-1) observations at analysis time. Green rectan-
gle represents the response function region at forecast hour 24. 

Figure 4. Convection producing members (max column reflectivity > 0) within the response function region (see green box in Figure 
1) at response time minus non-convection producing members (shaded) at forecast hours 0 (left), 12 (middle), and 24 (right) for vari-
ables (a)-(c) mean 2-m temperature (K) and (d)-(f) mean 2-m dewpoint (K). Contoured is the subset mean of convective producing 
members for each respective variable every 2 K. 

Figure 2. Expected variance reduction (red) and actual variance reduction (blue) by assimilating targeted 2-m temperature (K) ob-
servations from five different stations for response functions (a) averaged 2-m temperature (K2), (b) max column reflectivity (dBZ2), 
and (c) max column vertical velocity (m2 s-2) within the response region (see green box in Figure 1).

Figure 3. Domain configuration for nested DART-WRF simula-
tions. 

• Convection developed in the early afternoon over north Texas
• Observations from the West Texas Mesonet (WTM) are withheld 
from assimilation to determine which station would have the largest 
impact on variance reduction
• Station with the largest predicted impact is selected, 2-m tempera-
ture is assimilated, and new variance is assessed
• This process is repeated for five stations and three response func-
tions (Figure 2)

• It appears the assimilation of tar-
geted surface temperature obser-
vations had negative and positive 
effects on forecast variance, for the 
three selected response functions 
(Figure 2)
• Is there a problem? Why are the 
results not consistent with theory?

• 2-m temperature and 2-m dewpoint exhibited the largest differences 
between two subset means (Figure 4)
• Two subsets were classified, ones that produced convection (max col-
umn reflectivity > 0) within the response function region at forecast 
hour 24 and those that did not 
• Differences at initial time were primarily located along a pre-existing 
dryline and area of convection 
• Differences translated in time and space towards the response function 
region at forecast hour 24 (Figure 4 c,f)

• Observation targeting can be applied easily using a data denial ap-
proach to assess how West Texas Mesonet observations improve pre-
dictability of mesoscale dryline convective-initiation 
• Assimilated target observations provided mixed results, sometimes 
reducing forecast variance and other times increasing it
• Variance increasing when target observations are assimilated could 
be a result from bi-modal distributions of chosen response functions, 
which violates targeting theory
• Can theory of observation targeting be useful on the meso- and con-
vective scales? If not, why not?

• Use convective-based response fuctions that are continuously distrib-
uted across the ensemble members and don’t exhibit bi-modal signa-
tures (e.g. low-level shear, moisture gradients) 
• Use more dryline cases to determine climatological targeting areas 
for dryline convective-initiation in the Southern Plains
• Mobile observing with TTU StickNet platforms and radiosondes, en-
semble-based sensitivity and targeting in real-time, and using targeted 
observations to reduce forecast error
• Do targeted observations hold value over non-targeted observations 
when assimilated?
• Use observation targeting to improve prediction of other mesoscale 
phenomena (e.g. winter weather, wind) Ancell, B. C. and G. J. Hakim, 2007: Comparing ensemble and adjoint sensitivity analysis with applications to observation targeting.
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Figure 5. Scatter of response functions (a) average 2-m temperature (K), (b) max column reflectivity (dBZ), and (c) max column 
vertical velocity (m s-1) at forecast hour 24 within a response function region (see green box in Figure 1) versus initial condition 
2-m temperature (K) at a point identified as a targeting region in west Texas. Green line is the linear regression fit to the scatter. 
Correlation coefficient identified in upper left corner. 

• The theory requires a relationship between forecast metric and ini-
tial conditions to be linear and the response function Gaussian, not 
bi-modal as it appears to be in this case (see Figure 5)
• The presence of such a bi-modal type response function likely ren-
ders the theory developed by Ancell and Hakim (2007) and Torn and 
Hakim (2008) inaccurate
• These initial condition differences may be a factor in the increase of 
forecast metric variance, which doesn’t follow the observation target-
ing theory

• An assimilation procedure with the Data Assimilation Research Test-
bed (DART; Anderson et al. 2009) and Weather and Research Forecast-
ing (WRF) V3.3.1 model is used with two, one-way nested inner do-
mains as seen in Figure 3 (only domain 3 is considered here)
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