Radically Shifted Atmospheric Circulation and Intensified Anticyclones: Causes of Recent Extreme Cold Weather Events in Eurasia

Xiangdong Zhang

International Arctic Research Center, University of Alaska Fairbanks

In Collaborations With

A. Sorteberg¹, J. Zhang², R. Gerdes³, J. C. Comiso⁴, C. Lu⁵, and Z. Guang⁵ ¹Bjerknes Centre for Climate Research, Norway ²Department of Physics and Energy &Environmental Studies, NC A&T State University, USA ³Alfred Wegener Institute for Polar and Marine Research, Germany ⁴NASA Goddard Space Flight Center, USA ⁵ Nanjing University of Information Science and Technology, China

• Drastic declining sea ice over the Atlantic Arctic Ocean

Atlantic Arctic Ocean: Barents Sea, Kara Sea, and Laptev Sea

• <u>Surface air temperature increase pattern has shifted: Amplified</u> warming over the Arctic but cooling over Eurasia

Scientific Question:

What has driven the temperature increase pattern shift along

with the rapid declining Arctic sea ice?

Hypothesis:

It is a change in the atmospheric circulation.

• Spatial pattern change in the atmospheric circulation

• Accelerated poleward shift unprecedented invasion into the Barents Sea of the polar center of action

Running EOF/PC (Rn-EOF/PC) analysis:

- 30-winter-month running window
- EOF/PC analysis seeks spatiallyand temporally-coordinated pattern that explains maximum variance and identifies centers of action

Zhang et al., 2008

• Atmospheric circulation pattern shift and the Arctic Rapid change Pattern (ARP)

<u>ARP has not only orchestrated rapid changes in the Arctic climate</u> system but also played driving role in midlatitude climate

<u>Monthly or seasonal mean temperature cannot reflect extreme cold</u> <u>events</u>

Time	Station	Coldest Daily Minimum SAT	Monthly Mean Daily Minimum SAT
Jan 2006	TARKO-SALE (235520)	-54.2	-29.1
Jan 2008	NJURBA (246390)	-55.5	-40.4
Dec 2009	NJURBA (246390)	-50.3	-37.6
Jan 2010	SUNTAR (247380)	-51.5	-38.2
Feb 2012	UST-MAJA (249660)	-51.0	-40.8

Eurasian cyclones has weakened and anticyclones has intensified

<u>Zhang et al. (2012)</u>

Summary

• The atmospheric circulation pattern drastically shifted since the mid-1990s.

• The extremely shifted atmospheric circulation pattern (ARP) has enhanced Arctic-global climate interactions:

1. It built up a shortcut for warm air/water inflow into the Arctic, amplifying Arctic warming and sea ice melting.

2. It redistributed polar cold air to Eurasian midlatitude, causing cold weather events there.

• Anticyclone activities have intensified over Eurasia, playing a fundamental role in causing daily-based extreme cold weather events.