An Observational Study of Urban-Modified Thunderstorms Across the Nashville Metro Area 2003-2012

KELLY BOYD P.H.D. STUDENT (MISSISSIPPI STATE UNIVERSITY) DR. JILL S.M. COLEMAN (BALL STATE UNIVERSITY)

Purpose

- 1. Identify city-storm modification events for database integration
- 2. Find typical atmospheric conditions for the occurrence of the phenomenon and temporal patterns of events
 - For numerical modeling purposes
- 3. Detect urban-storm modification identification locations within a different urban study area (ATL, IND, NYC, STL, CHI)
 - A slightly elevated terrain area is needed for research
- 4. Develop an objective term to identify unclassified phenomenon
 - City-thunderstorm initiation? Storm-urban modification?

Brief Background on Past Research

Bornstein et al. 1990 & 2000: NYC urban barrier effect on convective & frontal storms
1st to noticed storms slowed ahead & diverged around NYC-1990

Ist to identify urban areas form convergence regions overhead and downwind in ATL-2000

Dixon and Mote 2003: Patterns & causes of ATL's UHI-initiated precipitation

Studied spatial and temporal patterns of thunderstorms in relation to land-cover around Atlanta for 5 years and found moisture played a huge role in development

Niyogi et al. 2011: Urban Modification of Thunderstorms in Indianapolis
Suggested land-use and fluxes from the surface heterogeneity affect storms and movement

Bentley et al. 2012: Synoptic environments favorable for urban convection

Moderate instability with excess aerosols are needed for urban-storm development in ATL.

Defining Urban-Storm Modification

 <u>Splitting-</u> divergence upwind of the city convergence downwind of city (slight flow)

Theories:

- Different surface fluxes (UHI)? (Niyogi et al. 2011)
- Roughness length variations? (Rozoff et al. 2003)

Initiation - convergence overhead and on the peripherally of the city (no flow)

Theories:

- Convergence regions (UHI)? (Bornstein et al. 2000)
- Increased size & concentration of CCN? (van den Heever et al. 2007)

Images from Cotton et al. 2007

Defining an urban thunderstorm

 Urban thunderstorm is a meso-gamma convective process identified by weather radar that develops over urban land-cover in weak synoptic flow and must not be initiated by any visible surface forcing features lasting for 1 to 4 hrs.

Weak synoptic-flow environments within 500 km of Nashville (Brown and Arnold 1998)

Methods

Partially adopting the Dixon and Mote 2003 methodology:

- 1. Study Period: 2003-2012, Warm Seasons (May 1-Sept. 30)
- 2. Identify weak synoptic-flow days using archived upper-air charts from UCAR datasets
- 3. Examine days for thunderstorm modification (splitting or initiation), meeting the "urban thunderstorm" criteria using KOHX radar imagery from the NCDC
- 4. Once identified, temporal data of initiation and splitting were gathered (day/time/month/year).
- 5. Measured UHI intensity using urban (KBNA) and rural (KCKV) surface observing data 24 hours ahead of the event were collected and compared to average study days
- 6. KOHX sounding data were also collected before and after the storm events. Average temperature, dew point, geopotential and thermodynamic indices were calculated
- 7. Difference-of-means t-tests were conducted on all urban-thunderstorm days and compared to average weak synoptic flow study days. Statistically significant results were reported

Study Area

Temporal Results

1,530 days (10 years) were examined

- 528 days exhibited weak synoptic flow
- 175 days had precipitation

156 days had convection

- 22 (1.5%) of days met study definitions
 - 18 urban thunderstorm days
 - 4 bifurcation days
- 31 initiation & splitting storm centers were found
- 2005 & 2010 had the greatest events
 - 2004, 2007, & 2011 had no events
- Every month had "events"
 - August had the most of both types of modification

Urban Modified Thunderstorm Event Days

Surface Results

 Temperature differences may not be significant for storm development based on results

Sta	ation Time (CDT)	Urban T-Storm Event Days (X)	All Study Days (μ)	Difference	T-Score	p-value*
	1AM	1.9°C	1.5°C	0.4°C	1.676	0.109
	2AM	1.5°C	1.5°C	0.0°C	-0.072	0.943
	3AM	1.6°C	1.4°C	0.2°C	0.459	0.651
	4AM	1.4°C	1.4°C	0.0°C	0.017	0.986
	5AM	1.4°C	1.4°C	0.0°C	0.048	0.962
	6AM	1.3°C	1.2°C	0.1°C	0.593	0.559
	7AM	1.0°C	0.8°C	0.2°C	0.966	0.345
	8AM	0.5°C	0.5°C	0.0°C	0.125	0.901
	9AM	0.1°C	0.4°C	-0.3°C	-1.359	0.189
	10AM	0.0°C	0.3°C	-0.3°C	-1.287	0.212
	11AM	0.0°C	0.3°C	-0.3°C	-1.449	0.102
	12PM	0.6°C	0.3°C	0.3°C	1.618	0.121
	*1PM	0.7°C	0.3°C	0.4°C	2.561	0.018
	*2PM	0.8°C	0.3°C	0.5°C	3.348	0.003
	*3PM	0.7°C	0.4°C	0.3°C	2.771	0.011
	*4PM	0.9°C	0.4°C	0.5°C	2.279	0.033
	*5PM	0.9°C	0.5°C	0.4°C	2.503	0.021
	6PM	1.0°C	0.7°C	0.3°C	1.059	0.302
	7PM	1.2°C	1.3°C	-0.1°C	-0.030	0.976
	8PM	1.5°C	1.7°C	-0.2°C	-0.426	0.674
	9PM	1.5°C	1.7°C	-0.2°C	-0.367	0.717
	10PM	2.1°C	1.7°C	0.4°C	1.012	0.323
	11PM	1.9°C	1.6°C	0.3°C	1.166	0.257
	12AM	1.8°C	1.5°C	0.3°C	1.044	0.308

Sounding Results

- Most sounding results showed statistically significant differences between event & average study days (α=0.05)
 - Possible sampling of the UHI?
- Minimal convective instability and slightly elevated lapse rates were present

Parameters	Urban Thunderstorm Events	All Study Days	Difference	t-score	p- value*	
*MML-MR	14.5 g/kg	12.0 g/kg	2.5 g/kg	5.888	0.000	
*PWAT	40.0 mm	34 mm	6 mm	4.256	0.000	
LCL Height	880 hPa	877 hPa	3 hPa	0.439	0.665	
*LCL Temp.	17°C	14°C	3°C	6.169	0.000	
Index	Urban Thunderstorm Events		All Study I	Days D	ifference	
CAPE	970	970 J/kg		g 5	527 J/kg	
CIN	68 J/kg		56 J/kg	5	12 J/kg	
KI	31		22		9	
LI	-	-2			-2.9	

Parameter	Urban Thunderstorm Events (X)	All Study Days (μ)	Difference	t-score	p-value*
*925 hPa Height	842 gpm	811 gpm	31 gpm	5.327	0.000
*925 hPa Temp.	23.3°C	20.0°C	3.3° C	8.226	0.000
*925 hPa Dew Point	16.3°C	13.6°C	2.7° C	5.047	0.000
*925 hPa Mix Ratio	13.0 g/kg	11.2 g/kg	1.8 g/kg	4.175	0.000
*925 hPa Theta E	342 K	333 K	9 K	5.711	0.000
*850 hPa Height	1572 gpm	1535 gpm	37 gpm	7.572	0.000
*850 hPa Temp.	17.6°C	15.2°C	2.4° C	6.263	0.000
*850 hPa Dew Point	13.0°C	9.4°C	3.6° C	7.227	0.000
*850 hPa Mix Ratio	11.3 g/kg	9.5 g/kg	1.8 g/kg	5.018	0.000
*850 hPa Theta E	339 K	330 K	9 K	6.518	0.000
*700 hPa Height	3200 gpm	3154 gpm	46 gpm	8.024	0.000
700 hPa Temp.	6.8°C	6.3°C	0.5°C	1.278	0.215
*700 hPa Dew Point	-0.9°C	-4.8°C	3.9°C	3.611	0.002
*700 hPa Mix Ratio	5.6 g/kg	4.6 g/kg	1.0 g/kg	3.111	0.005
*700 hPa Theta E	327 K	324 K	3 K	2.998	0.007

Case Studies

- Impressive urban to rural temp differences
- Surface dew points 20°C (S winds @ 5 knots)
- Very low instability (KI: 9; CAPE ~500 J/kg)
- High 925–850-hPa temperatures & dew points

- Hodographs show weak wind shear for splitting
- Only +1.1°C UHI intensity (30°C @ KBNA)
- High theta-e and dew points (weak surface winds)
- Somewhat dry 3 days before event

Conclusion

- Convergence regions due to UHI temperature differences may exist often in urban areas, but without substantial moisture flow, urban modified convection is muted (similar findings from Dixon and Mote 2003)
- The position of the Bermuda high system off the Atlantic Coast may be a large factor
- Higher sensible heat fluxes from the UHI may bifurcate storms
 - Days ahead of splitting were "dry" in the area on average
- The spatial size and layout of the city may play a role in the episode of events
- Similar upper-air results were similar as Bentley et al. (2012) found with KFFC
- Modeling of the case studies are needed (bifurcation and initiation)

Sources and Questions?

• Bentley, M. L., Stallins, J. A. and W. S. Ashley, 2012: Synoptic environments favorable for urban convection in Atlanta, Georgia. Int. J. Climatol, 32, 1287-1294.

- Bornstein, R., and Q. Lin, 2000: Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmos. Environ., 34, 507–516.
- Bornstein, R., and M. LeRoy, 1990: Urban barrier effects on convective and frontal thunderstorms. Extended Abstracts, Fourth conf. on mesoscale processes, *Amer. Meteor. Soc.*, 120–121.
- Brown, M. E., and D. L. Arnold, 1998: Land–surface–atmosphere interactions associated with deep convection in Illinois. Int. J. Climatol., 18, 1637–1653.
- Changnon, S. A., 1981: METROMEX: A Review and Summary. Meteor. Monogr., No 40, Amer. Meteor. Soc.
- Cotton, W.R., and R. A. Pielke, 2007: Inadvertent human impacts on regional weather and climate. Human Impacts on Weather and Climate, 2nd ed., Cambridge University Press, 73-148.
- Dixon, P.G., and T. L. Mote, 2003: Patterns and causes of Atlanta's urban heat island-initiated precipitation. J. Appl. Meteor., 42, 1273-1284.
- Niyogi, D., P. Pyle, M. Lei, S. P. Arya, C. M. Kishtawal, M. Shepherd, F. Chen, B. Wolfe, 2011: Urban Modification of Thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. *J. Appl. Meteor. Climatol.*, **50**, 1129–1144.
- Rozoff, C. M., W. R. Cotton, and J. O. Adegoke, 2003: Simulation of St. Louis, Missouri, land use impacts on thunderstorms. J. Appl. Meteor., 42, 716-738

Contact Information

Mississippi State University

Mr. Kelly Boyd, MS, MS PhD Student, Earth & Atmospheric Sciences

MS, Geographic Information Science, Indiana University MS, Geography (Applied Atmospheric Science), Ball State University

1-317-690-0143 kelly@kelly-boyd.com www.kelly-boyd.com

