Unsupervised Detection of Bow Echoes in Dual Polarization Radar Data

Matthew Wiesner, Joseph Hardin, V. Chandrasekar

Project Motivation

- Facilitate historical radar data lookup
 - Search by feature not by date
- Adaptive Radar Sensing
- Prior work separates radar segmentation from feature identification
 - This work attempts to integrate both fields

Methodology: Outline

- Segmentation (Lakshmanan) + Feature Detection
 - 1. Grid Radar Data (Image)
 - 2. Compute texture vectors at each image pixel
 - 3. Use k-means algorithm and flood-fill for hierarchical segmentation
 - 4. Principal Components Analysis (PCA) and 2nd order polynomial for feature detection

Texture

Textures in Radar

- Computed in a 7x7 neighborhood
- $-T_{xy} = \{mean, variance, coefficient of variation, skewness, kurtosis, homogeneity, contrast\}$

Texture Segmentation

- Formal method of forming textures by k-means clustering (Lakshmanan):
 - Pixels should be clustered based on their texture values as done on the previous slide
 - Pixels should be clustered based on a Markov assumption that adjacent pixels will be members of the same texture
 - A pixel is assigned to the cluster which minimizes a cost function that accounts for both of the above

Texture Segmentation

• Results of k-means clustering for 5 textures

Segment Merging

- Next highest level of segmentation hierarchy
- Merge Segments in order of texture space proximity

Candidate Segments

- Which segments are candidate bow echoes?
 - Segments should have a high mean reflectivity
 - Segments should not be too small
 - Examine each level in the hierarchical segmentation for candidate segments

Bow Echo Conditions

- Segment must be LINEAR
 - One large eigenvalue of covariance matrix (PCA)
- Segment must have noticeable CURVATURE
 - Relatively high weight of 2nd order term in quadratic fit
- Segment must have an ARC LENGTH longer than 20km
- The THICKNESS to length ratio of the segment must be low
 - A measure of "noise" around a skeleton of the bow echo
- If these conditions are met, a bow echo is detected

Bow Echo Detection

Example of Linear, Non-Bow Echo Storm

Curvature = 0.0162 Linearity = 0.94 arc length = 162.0088

Bow Echo Detection

 A successfully detected bow echo meets all of the previous requirements as in the example shown below

Performance

- Algorithm runtime scales poorly with resolution which limits accuracy
- Down-sampling factor depends on the size of the range gates (4 for 1 km, 15 for 0.25 km)
- Runtime/scan <= 1 min

Minneapolis, MN: 07/31/2008

True Positive Rate: 89.6% False Positive Rate: 6.13% False Negative Rate: 1.04%

True Negative Rate: 89.8%

False Positive Rate: 10.2%

False Positive Rate in

Thunderstorms: 28.2%

Performance

Optimizing performance

- True Positive Rate is between 70 90% depending on parameter values
- False Positive Rate can be up to 30%
- Runtime per scan is <= 1 minute
- ROC curves indicate reasonable results for 1rst past classifier
- Temporal analysis yields more accuracy, and can be used to give confidence margins

Future Work

- Acceptable preformance but...
 - Improved detection with more sophisticated algorithms (Hough Transform for parabola detection)
 - Algorithm can be used to create a training corpus of bow echoes for use in supervised detection
 - Algorithm may run much quicker if optimized for speed