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Project Motivation

* Facilitate historical
radar data lookup

— Search by feature not by
date

* Adaptive Radar Sensing

* Prior work separates
radar segmentation
from feature
identification

| ]
— This work attempts to : |
integrate both fields |
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Methodology: Outline

* Segmentation (Lakshmanan) + Feature
Detection

1.
2.
3.

Grid Radar Data (Image)

Compute texture vectors at each image pixel

Use k-means algorithm and flood-fill for
hierarchical segmentation

Principal Components Analysis (PCA) and 2"d
order polynomial for feature detection



Texture

e Textures in Radar

— Computed in a 7x7 neighborhood

— Ty = {mean, variance, coefficient of variation, skewness,
kurtosis, homogeneity, contrast}
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Texture Segmentation

 Formal method of forming textures by k-means
clustering (Lakshmanan):

— Pixels should be clustered based on their texture
values as done on the previous slide

— Pixels should be clustered based on a Markov

assumption that adjacent pixels will be members of
the same texture

— A pixel is assigned to the cluster which minimizes a
cost function that accounts for both of the above



Texture Segmentation

Results of k-means clustering for 5 textures

Radar Image: July 7, 2010 1:01:38 :Downsampling Factor = 4 dBZ
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Segment Merging

* Next highest level of segmentation hierarchy
 Merge Segments in order of texture space proximity

Radar Image: July 7, 2010 1:01:38 :Downsampling Factor =4 dBz Second Level of Image Segmentation
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Candidate Segments

* Which segments are candidate bow echoes?
— Segments should have a high mean reflectivity
— Segments should not be too small

— Examine each level in the hierarchical
segmentation for candidate segments

Chosen Segments from Next

Most Detailed Segmentation Level dBZ




Bow Echo Conditions

Segment must be LINEAR

— One large eigenvalue of covariance matrix (PCA)
Segment must have noticeable CURVATURE

— Relatively high weight of 2" order term in quadratic fit
Segment must have an ARC LENGTH longer than 20km

The THICKNESS to length ratio of the segment must be
low

— A measure of “noise” around a skeleton of the bow echo
If these conditions are met, a bow echo is detected



Bow Echo Detection

 Example of Linear, Non-Bow Echo Storm

Curvature = 0.0162

Principal Components Analysis on a Radar Image Segment
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Bow Echo Detection

* A successfully detected bow echo meets all of the previous
requirements as in the example shown below

Reflectivity PPI: July 29,1997 3:07:34
P Bow Echo Segment from July 29, 1997 Bow Echo Event at 3:07:34
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Performance

Algorithm runtime scales poorly with resolution which
limits accuracy

Down-sampling factor depends on the size of the range
gates (4 for 1 km, 15 for 0.25 km)

Runtime/scan <= 1 min
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Minneapolis, MN: 07/31/2008
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Kansas City, MO: 05/02/2008
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RALEIGH, NC: 04/16/2011

—Moving Average Bow Echo Confidence Margin: Window of 20 Scans
1+ Individual-Scan Bow Echo Detection .
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True Positive Rate

Performance

* Optimizing performance

ROC: Score ROC: Curve ROC: Linearity
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* True Positive Rate is between 70 — 90% depending on parameter
values

* False Positive Rate can be up to 30%
* Runtime per scan is <=1 minute
 ROC curves indicate reasonable results for 1rst past classifier

 Temporal analysis yields more accuracy, and can be used to give
confidence margins




Future Work

e Acceptable preformance but...

— Improved detection with more sophisticated
algorithms (Hough Transform for parabola
detection)

— Algorithm can be used to create a training corpus
of bow echoes for use in supervised detection

— Algorithm may run much quicker if optimized for
speed



