

Forecasting short-term urban water demands based on the Global Ensemble Forecast System

Di Tian, Chris Martinez, and Tirusew Asefa 28th Conference on Hydrology - 2014 AMS Annual Meeting

February 2-6, 2014, Atlanta, Georgia

Short-term Water Demand Forecasts in Tampa Bay region

- The Tampa Bay Water makes **short-term water demand forecasts** to optimize water supply management
- The Tampa Bay Water has developed **1-week ahead** weekly water demand forecast models based on auto-regressive integrated moving average models with exogenous variables (**ARIMAX**)

Input Variables	Descriptions
WD (mgd)	Water demand
WeekRain (mm)	Weekly total rainfall
RainDays	number of rainy days (>0.01 inch) in a week
CosRainDays	number of consecutive rainy days in a week
HotDays	number of hot days (>85 F) in a week

Global Ensemble Forecast System (GEFS)

• Retrospective forecasts (**reforecasts**) (Jan 1985 to present) of a newly developed numerical weather prediction model (NWP)

> Horizontal Grid (Latitude-Longitude)

Physical Processes in

a Mode

Vertical Grid (Height or Pressure)

- Forecast range (lead time): 1-16 days
- Time step: convert to weekly
- 11 forecast members
- 1° x 1° resolution

http://www.esrl.noaa.gov/psd/forecasts/reforecast2/download.html

Objectives

- To evaluate forecast analogs of water demand related weather variables from reforecasts of the GEFS using station-based observations in the Tampa Bay region
- 2. To test whether short-term water demand forecasts can be improved using forecast analogs of the GEFS in the Tampa Bay region

Analog approach

Forecast Evaluation for Weather Variables

 Probabilistic Weather Forecasts: Rank Probability Skill Score (RPSS):

 $RPSS = 1 - \frac{RPSS_{forecast}}{RPSS_{c \lim ato \log y}} -\infty \text{ to } 1$

• **Deterministic Weather Forecasts**: Mean square error skill score (**MSESS**):

$$MSESS = 1 - \frac{MSE_{forecast}}{MSE_{c \lim ato \log y}} -\infty \text{ to}$$

- Positive value indicates the skill is better than climatology
- Cross-Validation was conducted for all forecasts

Deterministic Forecasts for Weather Variables

Probabilistic Forecasts for Weather Variables

Modification of Water demand (WD) model

- In order to use the weather forecast information, we need to modify these WD models
- All input weather variables (except HotDays) of the original WD model were advanced by one week.
- Then the forecast analogs of the weather variables can be used to drive the modified model

Model	POCs	Variables for Original Model	Variables for Modified Model
1	Little Road, US41, Odessa	WD(t), WD(t-1), CosRainDays(t), CosRainDays(t-1), WeekRain(t), HotDays(t)	WD(t), WD(t-1), CosRainDays(t+1), CosRainDays(t), WeekRain(t+1), HotDays(t)

WD Forecast Evaluation

- Uncertainty of the Ensemble Water Demand Forecasts Driven by Forecast Analogs:
 - **p-factor**: the percent of observations covered by the ensemble forecast
 - **r-factor**: the average width ensemble forecast relative to the standard deviation of the observations

p-factor close to 1 represents perfect forecast; r-factor close to 1 represents the same uncertainty as standard deviation

 Median of Ensemble Water Demand Forecasts (Deterministic): coefficient of determination (R²), Coefficient of efficiency (E), root mean square error (RMSE), and mean absolute error (MAE)

WD Forecast Results

Summary of Deterministic WD

Forecast Results

Model		Original model			Analog driven (median)			
	R2	Е	RMSE	MAE	R2	Е	RMSE	MAE
1	0.66	0.65	1.58	1.24	0.70	0.68	1.48	1.14
2	0.74	0.73	1.13	0.86	0.75	0.74	1.12	0.85
3	0.88	0.88	0.42	0.33	0.88	0.87	0.42	0.32
4	0.67	0.64	2.74	2.07	0.71	0.68	2.58	1.97
5	0.67	0.65	0.20	0.15	0.70	0.67	0.20	0.15
6	0.74	0.74	2.84	2.28	0.79	0.77	2.70	2.08
7	0.65	0.63	1.41	1.10	0.68	0.65	1.36	1.03

During validation period from 9/23/2004 to 2/25/2010

Summary

- The analog approach generally showed high skill for forecasting weather variables related to urban water demand
- The analog-driven urban water demand forecast models mostly showed higher skill than the original forecast models implemented by the Tampa Bay Water
- The GEFS showed promising features for advancing short-term urban water demand forecasts

Acknowledgements

NOAA Climate Program Office SARP-Water program and NOAA-RISA program

Methods – Modification of WD model

Model	POCs	Variables for Original Model	Variables for Modified Model
1	Little Road, US41, Odessa	WD(t), WD(t-1), CosRainDays(t), CosRainDays(t-1), WeekRain(t), HotDays(t)	WD(t), WD(t-1), CosRainDays(t+1), CosRainDays(t), WeekRain(t+1), HotDays(t)
2	Cosme	WD(t), CosRainDays(t), CosRainDays(t-1)	WD(t), CosRainDays(t+1), CosRainDays(t)
3	Lake Bridge	WD(t), CosRainDays(t), CosRainDays(t-1), WeekRain(t)	WD(t), CosRainDays(t+1), CosRainDays(t), WeekRain(t+1)
4	Lithia	WD(t), CosRainDays(t), RainDays(t), HotDays(t)	WD(t), CosRainDays(t+1), RainDays(t+1), HotDays(t)
5	Maytum	WD(t), WD(t-1), RainDays(t)	WD(t), WD(t-1), RainDays(t+1)
6	Pinellas, Keller	WD(t), CosRainDays(t), CosRainDays(t-1), WeekRain(t), HotDays(t)	WD(t), CosRainDays(t+1), CosRainDays(t), WeekRain(t+1), HotDays(t)
7	NWH, Lake Park	WD(t), CosRainDays(t), CosRainDays(t-1), WeekRain(t), HotDays(t)	WD(t), CosRainDays(t+1), CosRainDays(t), WeekRain(t+1), HotDays(t)

Methods – Forecast Evaluation

• **Probabilistic Weather Forecasts**: Rank Probability Skill Score (**RPSS**):

WD Forecasts

Model 1

Model 4

WD Forecasts

Model 5

Model 7

