Internal Spacecraft Charging from the Environmental Radiation Monitors on the Van Allen Probes Spacecraft: Charging driven by solar wind conditions

Andrew Gerrard¹, Louis Lanzerotti¹, Thomas Sotirelis², John Goldsten², Barry Mauk²

- 1. New Jersey Institute of Technology
- 2. Applied Physics Laboratory-John Hopkins University

Special Thanks to Kyungguk Min [Auburn], the RBSPICE team, and the larger VA Probes Team!

Environmental Radiation Monitors on VA Probes

The ERM packages are described in detail in Goldsten et al. [2012].

Power and data for the ERM instruments are on the same interface as the Radiation Belt-Storm Probes Ion Composition Experiment (RBSPICE) instrument Mitchell et al. [2013].

We focus on the two spacecraft charge monitors that are part of each ERM package, CM1 and CM2, each under different thicknesses of aluminum, 1-mm and 3.8-mm, detect penetrating electrons of >0.7-MeV and >2.0-MeV and protons of >15 MeV and >30 MeV, respectively.

The ERM charge monitors have a sensitivity of ~0.1-fA/cm² and up to ~3000-fA/cm²

Charge monitor data are collected from both plates every 5-seconds.

Periapsis data (zero signal) used to estimate and remove system bias.

Bias-corrected raw data is then converted to current using pre-launch calibration.

Orbits and Data

- The data shown herein were obtained during the first 7months (October 1, 2012-April 30, 2013) of the Van Allen Probes mission.
- During this time, the apogee of the Probes precessed from ~06 MLT to 00-MLT (i.e., from the dawn-side to the midnight sector).

General Characteristics

- Charge enhancements associated with ring-current activity, in turn caused by the magnetospheric response to interplanetary structures (later)
- "Background charging" of ~60-fA
- Reduction of charging in the slot region

General Characteristics

- Charge enhancements
 associated with ring-current
 activity, in turn caused by
 the magnetospheric
 response to interplanetary
 structures (later)
- "Background charging" of ~60-fA
- Reduction of charging in the slot region

[Note coord. flip on this slide.]

Charging Associated with Interplanetary Structures

CME-associated

Cautionary Note

- Phase 1: Interplanetary structure enters Earth's space environment
- Phase 2:
- Phase 3:

Cautionary Note

 Phase 1: Interplanetary structure enters Earth's space environment

• Phase 2: ???

• Phase 3:

Cautionary Note

 Phase 1: Interplanetary structure enters Earth's space environment

• Phase 2: ???

• Phase 3: Spacecraft Charging

Two CMEs

CME-associated

CIRs

CME-associated

CIRs

Dawnside to nightside

Bz is nominally 0, or negative during low ion densities

Compression region "driving" more ions into magnetosphere.

March CIR much more effective..

"Charge Floors"

- L~3.2 floor expected due to slot region associated with these energies
- Unclear as to the L~4 floor...

L~3.2

Conclusions To Date

- The next generation of spacecraft charging models (e.g., AE9 "V.20") will require synoptic charging data.
- The VA Probes ERM can provide such data.
- Already have ongoing catalog of CMEs, CIRs, and ULF associated charging
- As VA Probes precess through one complete orbit of Earth [and more], we will be able to address location dependence

