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The AFIT of Today is the Air Force of Tomorrow. 

Overview 
 

• Introduction/Goal of Research 
• Simulation Tool 
• Methodology 
• Results 
• Conclusion/Future Work 
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The AFIT of Today is the Air Force of Tomorrow. 

Introduction 

• Goal: couple numerical weather forecast, now-cast 
and satellite weather data with traditional climatologies 
for improved radiative transfer simulation 
– Higher fidelity path radiance for remote sensor applications 
– Higher resolution path refraction and optical turbulence 

effects for DE propagation 

• Core Analytical / Synoptic Observation Tools:   
– Laser Environmental Effects Definition and Reference 

(LEEDR) 
– NOAA’s numerical weather prediction tools (i.e. Global 

Forecast System) 
– NASA Aqua mission:  AIRS and AMSU sensor suite 
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The AFIT of Today is the Air Force of Tomorrow. 

Simulation Tool  
LEEDR 

• Calculates line-by-line and spectral band radiative transfer 
solutions by creating correlated, physically realizable 
vertical profiles of meteorological data and environmental 
effects (e.g. gaseous and particle extinction, optical 
turbulence, and cloud free line of sight) 

 
 

• Accesses terrestrial and 
marine atmospheric and 
particulate climatologies 
‒Allows graphical access to and 

export of probabilistic data 
from the Extreme and 
Percentile Environmental 
Reference Tables (ExPERT) 
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The AFIT of Today is the Air Force of Tomorrow. 

LEEDR 
Worldwide Climatology 

LEEDR ocean site selection map and upper air regions 

Tropical 

Polar-North 

Polar-South 

Midlat-South 

Midlat-North 

Desert (Red Shaded) 

573 ExPERT (land) locations represented in LEEDR 
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The AFIT of Today is the Air Force of Tomorrow. 
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LEEDR  
Profiling Atmospheric Effects 
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Mean Molecular Scattering
Mean Aerosol Scattering
Mean Clouds and Rain

• LEEDR provides 
user multiple 
interactive views of 
atmospheric 
radiative effects 
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The AFIT of Today is the Air Force of Tomorrow. 

• Description 
– Well mixed layer up to 1.5-2.0 km thick 
– Capped by temperature inversion 

• Effects 
– Trap pollutants & aerosols 
– Location of wind shear 
– Atmospheric turbulence (surface layer) 
– Increasing RH & extinction with height 

 

LEEDR 
Atmospheric Boundary Layer:  Realistic Lapse Rate  

θ T w N
Potential Temp Temperature H2O mixing ratio Aerosol # conc.

Dry adiabatic temperature lapse rate 

Moist (saturated) lapse rate 

Lapse rate of dewpoint temperature 
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The AFIT of Today is the Air Force of Tomorrow. 

LEEDR 
Standard vs Realistic Extinction Profiles 

Left panel: Absorption and scattering effects on 355nm radiation from 4000 m 
altitude to the surface in a US Standard Atmosphere where the boundary layer is 
only defined with a constant aerosol concentration through the lowest 1250m. Right 
Panel: Same vertical path and boundary layer aerosol concentration as the left 
panel, but applying a realistic Dayton, OH summer atmosphere at 1400 local 
(LEEDR – calculated and Raman LIDAR Observation) 
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The AFIT of Today is the Air Force of Tomorrow. 
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• Ratios of HEL 

irradiance; realistic 
aerosol environment 
over standard 
environment 
− Std: US Std Atm with 23km 

Modtran Rural aerosols  

• Realistic conditions at 
land sites are in 
general worse than 
standard in terms of 
DE propagation 

LEEDR Realistic Atmospheres 
The Impact:   Elevated Aerosol Extinction 

Fiorino, Shirey, Via, Grahn, and Krizo, 2012 ‘Potential Impacts of 
Elevated Aerosol Layers on High Energy Laser Aerial Defense 
Engagements’. Proc. of SPIE Vol. 8380 83800T 
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The AFIT of Today is the Air Force of Tomorrow. 

Air University: The Intellectual and Leadership Center of the Air Force 
Aim High…Fly - Fight - Win 

LEEDR Path Radiance GUI 

Important for Solar/Lunar 
Calculations! 
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The AFIT of Today is the Air Force of Tomorrow. The AFIT of Today is the Air Force of Tomorrow. 

Air University: The Intellectual and Leadership Center of the Air Force 
Aim High…Fly - Fight - Win 

LEEDR Path Radiance GUI 
Key Aspect:  Earth-Sun-Moon Geometry 
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The AFIT of Today is the Air Force of Tomorrow. 

Air University: The Intellectual and Leadership Center of the Air Force 
Aim High…Fly - Fight - Win 
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LEEDR Path Radiance 
Tailored Derivation / Flexible Solutions 
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• Upward or downward 
looking spectral path 
radiance calculation fully 
incorporated into LEEDR 
 Line-by-line 
 Correlated-k 
 Single scattering 
With / without aerosol 

effects 
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The AFIT of Today is the Air Force of Tomorrow. 

Air University: The Intellectual and Leadership Center of the Air Force 
Aim High…Fly - Fight - Win 

Point to Point  
Apply atmospheric  compensation 

correction to improve aim, hit 
endpoint 

Displaced Path 
Calculate actual path of laser 

when aimed at endpoint 

LEEDR Path Bending GUI  
Realitic Atmospheric Refractivity Profiles 
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The AFIT of Today is the Air Force of Tomorrow. 

14 
Air University: The Intellectual and Leadership Center of the Air Force 

Aim High…Fly - Fight - Win 

• Ingest gridded, 3D NWP-derived nowcast, forecast, 
post-event atmosphere to verify / enhance simulation 
 
 
 
 
 
 

• Atmosphere for scenario’s propagation path 
interpolated from GFS grid data (GFS 1, GFS 2, etc) 

Integrate gridded numerical Wx 
forecast data and remote sensor 

profiles 

Evaluate / compare 
atmospheric 

characterization methods 

Evaluate impact :   
Remote sensing and 

Directed Energy 
Propagation Applications Optimize Path Bending / 

Radiance code 

Methodology 
Ingest Numerical Wx Prediction and Remote Sensor Data 

Upgrade radiative transfer code tools 
(e.g. Path Bending, Path Radiance) 

•Initial state: climo-based effects 
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The AFIT of Today is the Air Force of Tomorrow. 

Air University: The Intellectual and Leadership Center of the Air Force 
Aim High…Fly - Fight - Win 

Methodology  
NWP Impact:  Extinction / RH Comparisons 
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NOMADS - 29 August 2013 (1800 Cycle +27hrs)

WPAFB ExPERT Site - Summer, 1500-1800L

LEEDR Extinction Profiles  
(using NWP) 

LEEDR Extinction Profiles  
(using Climatology) 

LEEDR RH Profiles  
(using NWP or Climatology) 
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The AFIT of Today is the Air Force of Tomorrow. 

Air University: The Intellectual and Leadership Center of the Air Force 
Aim High…Fly - Fight - Win 

Methodology 
Satellite-Derived Cn

2  

• Atmospheric IR sounder (AIRS) and 
Advanced Microwave Sounding Unit 
(AMSU on polar orbiting Aqua Satellite 

• Global coverage provides vertical 
temperature profile (surface to 80km) at 
each sounding location 

• Height assigned to pressure levels by 
adding each layer’s thicknesses 
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The AFIT of Today is the Air Force of Tomorrow. 

• Thermal wind relationship used to derive vertical wind 
profiles 
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• Cn
2 profile 

calculated for each 
AIRS  sounding 
location 
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• Vertical temperature 
and pressure profiles 
are used along with 
∂Tv/∂Z and derived 
winds to calculate Cn

2  
 
 

Methodology 
Satellite-Derived Cn

2  
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The AFIT of Today is the Air Force of Tomorrow. 

Air University: The Intellectual and Leadership Center of the Air Force 
Aim High…Fly - Fight - Win 

Results 
Path Bending: Accounting for Refractivity Variations 

 

Path refractivity profile using an ExPERT (Climo) 
Atmosphere 

Improved (4D) refractivity resolution significantly effects radiative transfer solutions 

Path refractivity profile referencing 3 NOMADS (grid 
points) atmospheres along (nearest to) path 
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The AFIT of Today is the Air Force of Tomorrow. 

Air University: The Intellectual and Leadership Center of the Air Force 
Aim High…Fly - Fight - Win 

• Applied 3 ‘nearest neighbor’ gridded-NWP data for 4D refractivity calc 
 
  

Results 
Path Bending: Accounting for Horizontal Variations 

 
Laser Miss Distance 
Climo-derived – 64185.1m 
NWP-derived – 64297.3m 

Improved resolution numerical weather data significantly effects light bending solutions 
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The AFIT of Today is the Air Force of Tomorrow. 

Air University: The Intellectual and Leadership Center of the Air Force 
Aim High…Fly - Fight - Win 

Results 
Path Bending: Accounting for Refractivity Variations 
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Path Transmittance
Straight Slant Path

Path Transmittance
Point-to-Point Refracted Path

Path Transmittance
Displaced Refracted Path

Cross-spectrum transmission comparison for 100km path.  
Refractivity is varied 10 times across the depicted spectral range. 

Improved atmospheric (and refractivity) resolution significantly effects radiative transfer solutions 
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The AFIT of Today is the Air Force of Tomorrow. 

Climo-derived AIRS-derived NWP-derived 

Results  
Satellite Atmosphere Soundings:  Winds / Temp Comparisons 

Temperature  

Climo-derived AIRS-derived NWP-derived Climo-derived AIRS-derived NWP-derived 

Wind Speed Wind Direction 

Dayton OH 12 Jan 2014, 18Z 
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The AFIT of Today is the Air Force of Tomorrow. 

Climo-derived AIRS-derived NWP-derived 
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KH/KM - modified Tatarski 
Applying  

 Comparable Cn
2 Profiles for Dayton OH 12 Jan 2014, 18Z 

Results  
Satellite-derived Optical Turbulence Profiles - Comparisons 

Satellite-derived optical turbulence with enhanced global 4D resolution can offer flexible 
radiative transfer solutions 
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The AFIT of Today is the Air Force of Tomorrow. 

Conclusions 

• Coupling NWP and/or satellite weather data with 
climatologies enhance fundamental radiative tranfer 
calculations (e.g. path radiance and refraction, optical 
turbulence) 

• 4D-resolved optical turbulence and path refraction 
calculations will immediately benefit directed energy 
simulation tools (e.g. AFIT’s High Energy Laser Tactical 
Aid) and applications (e.g. laser communication system 
design) 

• High resolution path radiance solutions can benefit 
industry and Government remote EO/IR sensor design 
and capabilities 
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The AFIT of Today is the Air Force of Tomorrow. 

Future Work 

• Model Verification and Validation (V&V) 
– Subject matter expert software / data accuracy review 
– Results accuracy:  compare with field test campaigns 

• Mature integration of gridded NWP data into 
radiative transfer (e.g. LEEDR) and DE propagation 
models (e.g. AFIT’s High Energy Laser End to End 
Operational Simulation and Tactical Decision Aid) 

• Expand application of gridded NWP and remote 
satellite weather data 
– High resolution horizontal atmospheric variations  
– Enhance non-linear atmospheric effects analysis (e.g. 

deep turbulence effects) 
 



 Upward or downward looking spectral path radiance calculation fully incorporated into LEEDR 
•Line-by-line 
•Correlated-k 
•Single scattering 
•With / without aerosol effects 

Air Force Institute of Technology 
Center for Directed Energy 
Wright-Patterson AFB, Ohio 

This study investigates the utility of integrating gridded numerical weather prediction (NWP) data, accessible through NOMADS (NOAA National Operational Model Archive & 
Distribution System), and satellite data from the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) sensor suites for enhancing 
traditional radiative transfer calculations including atmospheric refraction and optical turbulence profiles. To support such analysis, the Laser Environmental Effects Definition 
and Reference (LEEDR) model’s radiative transfer code was modified to ingest and integrate such data with its probabilistic, geo-referenced atmospheric effects calculations.  
Leveraging LEEDR’s unique boundary layer treatment of temperature, pressure, water vapor, optical turbulence, and atmospheric particulate and hydrometeor vertical 
profiles as they relate to line-by-line or band-averaged layer extinction coefficients, these upgrades enabled more comprehensive, realistic 4D-resolved extinction analysis as 
well as light refraction and path radiance solutions at any wavelength between 350 nm and 8.6 m. The advantages of coupling numerical forecast, now-cast, and satellite 
weather data with atmospheric and aerosol climatologies for remote sensing and directed energy applications are quantified.   

AMERICAN METEOROLOGICAL SOCIETY 
94th Annual Meeting  2 - 6 February 2014 

Enhanced Atmospheric Refraction and Radiative Transfer Analyses 
Merging Gridded Numerical Weather Forecast and Satellite Data 
 

S. T. Fiorino, M. F. Via*, D. C. Meier, B. J. Elmore**, and K. J. Keefer*    
Department of Engineering Physics 

Simulation Tool: 

Results: 

Conclusions: 

A special thanks to the 
DoD High Energy Laser 
Joint Technology Office 
and USAF Research Lab 

for funding support 

LEEDR defines the well-mixed atmospheric boundary layer with a worldwide, probabilistic surface 
climatology according to season and time of day, then computes radiative transfer effects based on 
vertical profiles of interrelated variables including meteorological, aerosol, hydrometeor and optical 
turbulence.   

 
• Probabilistic Extreme and Percentile Environmental Reference Tables (ExPERT) data for 573 land 

sites; Surface Marine Gridded Climatology 
• 4D real-time and/or archived NWP now-cast / forecast and weather satellite data 
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 LEEDR provides  
user multiple 
interactive views of 
atmospheric 
radiative effects 

Raman LIDAR validates LEEDR’s unique profile of 
elevated aerosol effects which arise when 
aerosol radiative characteristics are correctly 
coupled to appropriate boundary layer lapse 
rates of temperature and dewpoint  

• Coupling NWP and/or satellite weather data with climatologies enhance fundamental radiative transfer 
calculations (e.g. path radiance and refraction, optical turbulence) 

• 4D-resolved optical turbulence and path refraction calculations will immediately benefit directed energy 
simulation tools (e.g. AFIT’s High Energy Laser Tactical Decision Aid) and applications (e.g. laser 
communication system design) 

• Higher resolution path radiance solutions can benefit industry and Government remote EO/IR sensor 
capabilities 

steven.fiorino@afit.edu  michelle.via.ctr@afit.edu 
david.meier@afit.edu  kevin.keefer.ctr@afit.edu 
 
 

LEEDR radiative transfer code augmented by: 

*Applied Research Solutions, Inc. **Southwestern Ohio Council for Higher Education 
     50 Chestnut Suite, 240                        3155 Research Blvd, Ste 204 
     Beavercreek OH 45440 USA        Dayton OH 45420 
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Path Radiance:  A Relative Earth – Sun – Moon 
Geometry Calculation & Surface Albedos 

Important for Solar/Lunar Calculations! 
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Point-to-Point Path: ExPERT vs NOMADS @ WPAFB 26 Jan 14
Pltfm: 1m, Tgt: 2km, Path Length: 100km, Az: 270
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Pltfm: 1m, Tgt: 2km, Path Length:100km, Az:270
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Improved 4D atmospheric (and refractivity) resolution significantly effects accuracy of 
radiative transfer solutions: Comparison of cross-spectrum transmission for a straight 100 km 
(direct, point-to-point refracted and displaced refracted) path. The amount of refraction is varied 
10 times across the spectral range shown. 

http://nomads.ncdc.noaa.gov/data/gfs4/ 

Path Bending / 
Correction:  

Accounting for  
Variation in the 

Atmospheric 
Refractivity 

Displaced Path 
Aim at endpoint, calculate laser 
path using path’s refractivity profile 

Light Bending:  Climatology vs Numerical Weather Data 
Displaced Path Point-to-Point ExPERT (climatology) miss distance: 64,185.1 m 

NOMADS miss distance: 64,297.3 m 
** NOMADS predicted a 112.2 m longer bent path length than climo **  

Path refractivity profile based on 3 NOMADS atmospheric profiles 
(vs only 1 for ExPERT) to consider horizontal variations 
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Winds and Temperature Profiles: Climo-, Numerical 
Weather and Satellite 
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Radiosonde Measured vs AIRS-derived Wind Profile  

• Global coverage 
provides atmospheric 
vertical temperature 
profile (surface to 80km) 

• Thermal wind 
relationship used to 
derive vertical wind 
profiles 

• Vertical temperature and 
pressure profiles are 
used along with ∂Tv/∂Z 
and derived winds to 
calculate Cn

2  
• Cn

2 profile calculated for 
each AIRS  sounding 
location 
 
 

 

Satellite-derived Optical Turbulence: Enhanced, 
global 4D resolution 

Satellite-Derived vs Climo and Numerical Weather 
Data 

  Point to Point  
Calculate aimpoint solution which 
compensates for path refractivity 
and illuminate desired enpoint 

mailto:steven.fiorino@afit.edu
mailto:michelle.via.ctr@afit.edu
mailto:david.meier@afit.edu
http://en.wikipedia.org/wiki/File:Air_Force_Research_Laboratory.svg
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