Developing a Climatology of Snowfall Events in Oneonta, NY

David M. Loveless, Melissa L. Godek, and Jerome B. Blechman

 SUNY College at Oneonta, Department of Earth and Atmospheric SciencesIntroduction \& Goals
Situated directly between Binghamton and Albany, Oneonta is an interesting location to analyze snowfall. Oneonta is in a unique geographical position allowing for the city to be significantly impacted from a wide variety of snowstorms including Nor easters, Clippers, and Lake-effect storms. In addition, daily snowfall records have been collected by SUNY Oneonta, dating back to 1981. This is rare for any location outside a major city in NY. Similar to much
the Northeast, Oneonta has a large amount of seasonal variability in snowfall.

Goals:

 1981-2013. snowfall. snowfall in Oneonta. 32 year record

Analyze daily snowfall records for Oneonta, NY from
Identify the storms that produce snow most frequently. Identify the storms that produce the most intense

Identify the impacts that climate oscillations have on Identify potential changes in the snow season over the

Overall, the patterns found in this research should then be able to improve long-term (90 days) and shortterm (days to weeks) winter forecasts for Oneonta and the Central Leatherstocking region.

Methods \& Analysis

Storm Type Classification
Daily snowfall records are measured and recorded by SUNY
Oneonta. Oneonta.
\Rightarrow Utilize daily weather maps created by the Weather Prediction Center to observe the synoptic and mesoscale weather conditions on days that resulted in measureable snowfall in Oneonta, NY. \rightarrow Classify each snowfall event as a type of storm (Lake-effect Lake-enhanced, Colorado Low, Panhandle Lows, Alberta Clipper, Coastal Storm).
\Rightarrow Classify each snowfall event into classification levels based on total snowfall for that event:

\Rightarrow Determine which storms produced significant snowfall (at least 4.0" of snow) and which storms produced major snowfall (at least 10 " of snow) (Kocin and Uccellini, 2004)

Seasonal Characteristics

\Longrightarrow Identify timing and changes in the timing of 1) first measurable snowfall, 2) first plowable snowfall (at least 2.5" of snow), 3) last plowable snowfall, 4) last measurable snowfall, 5) length of season (number of days between the first and last measurable snowfall)
\longrightarrow Calculate correlation coefficients between monthly averaged ${ }^{750}$ North Atlantic Oscillation (NAO) and El Nino Southern Oscillation (ENSO) indices and monthly snowfall totals for November through March. The Oceanic Nino Index (ONI) is used to represent ENSO phase in this analysis.
\longrightarrow Calculate snow day frequency per phase of the NAO, using daily NAO indices, for all snow days from 1981 to 2013.

Observations \& Results

The day of the first measurable snowfall is observed to be occurring $\mathbf{0 . 4 5 8 6}$ days earlier each year.
This is not what would be expected in a warming climate. The day of the first plowable snowfall (greater than 2.5") is observed to be occurring 0.482 days later each year. The day of the last plowable snowfall is observed to be occurring $\mathbf{0 . 4 6 9 6}$ days earlier each year.

Most snow days occur with a neutral phase of the NAO. More snow days occur under a positive NAO than a negative NAO.
Greater than 30% of all level 4 and 5 days are under a positive NAO, while about 25% of all level 4 and 5 snow days occur under a negative NAO

\section*{Con

Con
 Conclusions \& Forecasting Applications

While the season for plowable snowfall events is getting shorter, the snow season as a whole (measurable snowfall) is actually getting slightly longer.
A slightly longer snow season is observed in Oneonta, which goes against what has been observed across most of the Northern Hemisphere by Choi et al. 2010.
However, it should be noted, the time in which plowable snowfall occurs is decreasing in length

Month	NAO Coefficients	ONI Coefficients
November	-0.196	0.053
December	-0.543	-0.042
January	-0.297	-0.041
February	-0.334	0.203
March	-0.177	-0.144

NAO has a much greater correlation with DJF snowfall than ENSO, with NAO explaining 30% of the variation during those months. Trend towards more snow in a negative NAO on a monthly time scale.
ENSO has a very weak influence on monthly snowfall.

The day of the last measurable snowfall is observed to be occurring 0.3184 days earlier each year.
The length of the snow season is observed to be increasing by 0.1402 days per year.
Trends in the day of the first measurable, first plowable, and last plowable snowfall are statistically proven to be non-zero trends using a Student's t-distribution.

Coastal Storms are the most frequent producers of significant snowfall.
Both Panhandle Lows and Colorado Lows also produce a notable number of significant events.
Clippers are capable of producing significant snowfall, but rarely do.

Lake-effect snowfall occurs most often, but primarily produces low snowfall accumulations (Levels 1 and 2). Alberta Clippers also occur frequently, and also primarily produce lower snowfall accumulations.
Coastal Storms produce more heavy snowfall accumulations (Levels 3, 4, and 5) than low accumulations. It is the only storm type with that attribute.

Panhandle Lows and Colorado Lows primarily result in low snowfall accumulations, but are still more likely, than the other storms, to produce heavy snowfall.
The storm tendencies identified in this research should help with both short and medium range forecasts.

