THE VALUE OF PERFORMANCE,

NORTHROP GRUMMAN

Generating Large-Scale
Imagery from Satellite
Data with Python

American Meteorological Society 94t
Annual Meeting

Fourth Symposium on Modeling and
Analysis Using Python

Feb. 3, 2014

Albert Danial
al.danial@ngc.com

NORTHROP GRUMMAN

Overview

« Suomi NPP satellite.
« What is “large scale imagery”?

 This talk:
1. Python and Linux challenges of producing
« gigapixel imagery without PIL
 high resolution animations from >10° frames.
2. A technique for debugging parallel Python code

Suomi NPP NWM

NG-generated full globe
images from VIIRS bands
M5/M4/M3 (above) and

3 DNB (below)

http://www.ssec.wisc.edu/media/spotlight/npp-suomi.html
http://www.ssec.wisc.edu/media/spotlight/npp-suomi.html
http://www.ssec.wisc.edu/media/spotlight/npp-suomi.html

NORTHROP GRUMMAN

What is Large Scale Imagery?

« Large = anything that causes size-related problems on a high-end
computer (16 core, 128 GB of memory). Examples:
— Takes too long to generate
— Insufficient memory to generate using conventional techniques
— Can’t view results at full-scale

* Fortoday’s presentation I'll narrow “large” down to
— PNG files with >1.4 billion pixels (26000 x 52000)
— Animation made from >86,000 HD frames (1900 x 1100)

« Why make large images?

— Gigapixel images can be viewed in stunning detail on video walls—high scientific value
to locate pixels with specific conditions (cloud-free sun glint near fresh water coast)

— Animations are cool. Visit the Northrop Grumman booth on the exhibits floor.
All Suomi NPP imagery created with Python, ImageMagick and ffmpeg.

NORTHROP GRUMMAN

PIL has memory issues with large images

* Try this:
#!/usr/bin/env python
import numpy as np
from PIL import Image

size = 32000, 32000 # pixel columns, pixel rows

n pixels = np.prod(size)

rgba = zip((255*np.random.rand(n pixels)) .astype (np.uint8), # red
(255*np.random.rand (n pixels)) .astype(np.uint8), # green
(255*np.random.rand (n pixels)) .astype(np.uint8), # blue
(255*np.random.rand (n pixels)) .astype (np.uint8),) # alpha

im = Image.new ('RGBA', size)
im.putdata (rgba)
im.save ('random gigapixel.png')

* Runs out of memory on machine with 128 GB RAM
(should only need 18 GB).

 Work-around

— write R,G,B,A bytes to binary NetPBM PAM format P7
[] (= 4 GB) using header made with
conventional write () statements and Numpy .tofile () method

— Use ImageMagick convert to make JPEG or PNG (~1.3 GB) from PAM P7,
3x size reduction from PAM/P7 to PNG for typical earth images.

http://netpbm.sourceforge.net/doc/pam.html

NORTHROP GRUMMAN

Animation with many frames

« Goal: make a movie showing a full day of VIIRS data as seen via a nadir view
from the satellite

* basemap makes it easy to overlay data onto a globe.

 Problems:

— basemap can’t make movies

— [Each orbit is half daytime, half nighttime—need to show different products.
— Transition at ‘terminator’ can be jarring, need to blend.

— Want a smooth movie, 30 frames/second!

— Want high resolution!

e Solution:

— Make 86,400 high-res frames, one frame per second

— Render each frame as a three PNG’s with basemap
+ daytime R,G,B from VIIRS reflectance
* nighttime “near constant contrast” from VIIRS DNB
« small inset showing day/night terminator

— Use ImageMagick convert command with —composite switch to blend day/night frames across the
terminator

— Use ffmpeg to make an MP4 out of the blended PNG frames

NORTHROP GRUMMAN

Challenges

Large data volume (~ 1.4 TB for desired VIIRS products)

Large file count (5 PNG’s per frame = > 400,000 image files)

Computationally prohibitive without a cluster.

Python tricks:

— Sped up I/O by running a preprocessing step that extracts VIIRS data from HDF5 files,
saves desired portion to Numpy npz files.

— File “fan out” to multiple directories is essential.
bash> for N in "'seq -w 0 99 ; do mkdir $N; done
Then, in Python,
file path = '%02d/%s' % (hash(filename) % 100, filename)

Can make an MP4 (20 GB) movie in about four hours using 2,000 cores.

Debugging Parallel Python Code NORTHROP GRUMbMAN

« Parallel job division is simple; 86,400 frames across 2,000 cores; same
executable, each invocation works on a different set of frames. But:
— Some invocations produce tracebacks
— Some invocations seg fault (bugs in basemap)

» Python/Unix trick:

— Replace exception handler with call to pudb post-mortem debugger (based on

which does the same thing with pdb).
1. First install pudb.

2. Add to top of your Python code the line
import pudb pm on exception

3. Run your code as usual.
4. Tracebacks put you in the debugger! Magic!

— Submit each program invocation as a Unix ‘screen’ session; successful jobs do their work
and close the screen. Tracebacks live on in the debugger.

. Submit job 332 of 2000:
ssh node7743 screen —-S job 332 -d —-m make frames.py 332

. Then, to investigate the traceback
ssh node7743
screen —-DR Jjob 332

http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/

NORTHROP GRUMMAN

pudb pm on exception.py

import pudb
import sys
def info(type, value, tb):
if hasattr(sys, 'psl') or not sys.stderr.isatty():
sys. excepthook (type, value, tb)
else:
import traceback
traceback.print exception (type, value, tb)
print
pudb.pm ()
pudb.set interrupt handler ()
sys.excepthook = info

Based on
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/

http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/

Summary NW

« Simple Python tricks (and a cluster!) make the production of large
scale imagery easy.

— Write gigapixel images to PAM files directly, without existing Python modules, then
use ImageMagick to convert to desired formats.

— Manage large file counts by distributing files across directories, where a file's
parent directory is a modulus of hash () on the file names.

— IDE’s are not well suited for debugging parallel code on clusters. Instead use pudb
and screen.

« Northrop Grumman has the expertise to help you solve your big data
problems.

10

THE VALUE OF PERFOBRMANCE.

NORTHROP GRUMMAN

el

