
Generating Large-Scale

Imagery from Satellite

Data with Python

Feb. 3, 2014

American Meteorological Society 94th

Annual Meeting

Fourth Symposium on Modeling and

Analysis Using Python

Albert Danial
al.danial@ngc.com

Overview

• Suomi NPP satellite.

• What is ―large scale imagery‖?

• This talk:

1. Python and Linux challenges of producing

• gigapixel imagery without PIL

• high resolution animations from >105 frames.

2. A technique for debugging parallel Python code

2

Suomi NPP

3

Suomi NPP artist rendering
http://www.ssec.wisc.edu/media/spotlight/npp-suomi.html

NG-generated full globe
images from VIIRS bands
M5/M4/M3 (above) and
DNB (below)

http://www.ssec.wisc.edu/media/spotlight/npp-suomi.html
http://www.ssec.wisc.edu/media/spotlight/npp-suomi.html
http://www.ssec.wisc.edu/media/spotlight/npp-suomi.html

What is Large Scale Imagery?

• Large = anything that causes size-related problems on a high-end

computer (16 core, 128 GB of memory). Examples:

– Takes too long to generate

– Insufficient memory to generate using conventional techniques

– Can‘t view results at full-scale

• For today‘s presentation I‘ll narrow ―large‖ down to

– PNG files with >1.4 billion pixels (26000 x 52000)

– Animation made from >86,000 HD frames (1900 x 1100)

• Why make large images?

– Gigapixel images can be viewed in stunning detail on video walls—high scientific value

to locate pixels with specific conditions (cloud-free sun glint near fresh water coast)

– Animations are cool. Visit the Northrop Grumman booth on the exhibits floor.

All Suomi NPP imagery created with Python, ImageMagick and ffmpeg.

4

PIL has memory issues with large images

5

• Try this:
#!/usr/bin/env python

import numpy as np

from PIL import Image

size = 32000, 32000 # pixel columns, pixel rows

n_pixels = np.prod(size)

rgba = zip((255*np.random.rand(n_pixels)).astype(np.uint8), # red

 (255*np.random.rand(n_pixels)).astype(np.uint8), # green

 (255*np.random.rand(n_pixels)).astype(np.uint8), # blue

 (255*np.random.rand(n_pixels)).astype(np.uint8),) # alpha

im = Image.new('RGBA', size)

im.putdata(rgba)

im.save('random_gigapixel.png')

• Runs out of memory on machine with 128 GB RAM
(should only need 18 GB).

• Work-around

– write R,G,B,A bytes to binary NetPBM PAM format P7
[http://netpbm.sourceforge.net/doc/pam.html] (~ 4 GB) using header made with
conventional write() statements and Numpy .tofile() method

– Use ImageMagick convert to make JPEG or PNG (~1.3 GB) from PAM P7;
3x size reduction from PAM/P7 to PNG for typical earth images.

http://netpbm.sourceforge.net/doc/pam.html

Animation with many frames

• Goal: make a movie showing a full day of VIIRS data as seen via a nadir view

from the satellite

• basemap makes it easy to overlay data onto a globe.

• Problems:

– basemap can‘t make movies

– Each orbit is half daytime, half nighttime—need to show different products.

– Transition at ‗terminator‘ can be jarring, need to blend.

– Want a smooth movie, 30 frames/second!

– Want high resolution!

• Solution:

– Make 86,400 high-res frames, one frame per second

– Render each frame as a three PNG‘s with basemap

• daytime R,G,B from VIIRS reflectance

• nighttime ―near constant contrast‖ from VIIRS DNB

• small inset showing day/night terminator

– Use ImageMagick convert command with –composite switch to blend day/night frames across the

terminator

– Use ffmpeg to make an MP4 out of the blended PNG frames
6

Challenges

• Large data volume (~ 1.4 TB for desired VIIRS products)

• Large file count (5 PNG‘s per frame = > 400,000 image files)

• Computationally prohibitive without a cluster.

• Python tricks:
– Sped up I/O by running a preprocessing step that extracts VIIRS data from HDF5 files,

saves desired portion to Numpy npz files.

– File ―fan out‖ to multiple directories is essential.
 bash> for N in `seq –w 0 99`; do mkdir $N; done
Then, in Python,
 file_path = '%02d/%s' % (hash(filename) % 100, filename)

• Can make an MP4 (20 GB) movie in about four hours using 2,000 cores.

7

Debugging Parallel Python Code

• Parallel job division is simple; 86,400 frames across 2,000 cores; same

executable, each invocation works on a different set of frames. But:

– Some invocations produce tracebacks

– Some invocations seg fault (bugs in basemap)

• Python/Unix trick:

– Replace exception handler with call to pudb post-mortem debugger (based on

http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/

which does the same thing with pdb).

1. First install pudb.

2. Add to top of your Python code the line
import pudb_pm_on_exception

3. Run your code as usual.

4. Tracebacks put you in the debugger! Magic!

– Submit each program invocation as a Unix ‗screen‘ session; successful jobs do their work

and close the screen. Tracebacks live on in the debugger.

• Submit job 332 of 2000:
ssh node7743 screen –S job_332 –d –m make_frames.py 332

• Then, to investigate the traceback
ssh node7743

screen –DR job_332 8

http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/

pudb_pm_on_exception.py

9

import pudb

import sys

def info(type, value, tb):

 if hasattr(sys, 'ps1') or not sys.stderr.isatty():

 sys.__excepthook__(type, value, tb)

 else:

 import traceback

 traceback.print_exception(type, value, tb)

 print

 pudb.pm()

pudb.set_interrupt_handler()

sys.excepthook = info

http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
Based on

http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/
http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/

Summary

• Simple Python tricks (and a cluster!) make the production of large

scale imagery easy.

– Write gigapixel images to PAM files directly, without existing Python modules, then

use ImageMagick to convert to desired formats.

– Manage large file counts by distributing files across directories, where a file‘s
parent directory is a modulus of hash() on the file names.

– IDE‘s are not well suited for debugging parallel code on clusters. Instead use pudb

and screen.

• Northrop Grumman has the expertise to help you solve your big data

problems.

10

