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1. Introduction

One can deal with the uncertainty in initial conditions of a numerical model by two
different approaches. The Monte Carlo (MC) approach use a randomly chosen set of
initial states, usually obtained from a random Gaussian distribution, to evaluate the
impact of uncertainty in initial conditions for the time integration of a physical system.
The Stochastic Dynamic Equations (SDE) approach begins with an infinite ensemble of
initial states represented simply by the variance of the initial conditions. The MC is thus
an approximation of the SDE method. However, the SDE has a closure issue. Time
derivatives of second moments also requires knowledge of third moments, time
derivatives of third moments involves fourth moments, and so on.

This review will provide a simple example of the two methods for the original Lorenz
chaos equations. This equation set can produce a simple fixed point solution or a complex
chaotic solution — examples of both solutions with both methods will be demonstrated.

There is a method of using both approaches to fully dissect the nonlinearity of a system
of equations. This is rarely discussed, but demonstrates the power of the stochastic
dynamic equation set. That example will be reproduced here.

2. The Monte Carlo Approach

For large model applications such as weather and climate models, the MC method is the
only practical approach. The proper programming of Monte Carlo models can make
maximum use of the current multi-processor computers. A simple demonstration of the
MC method for the Lorenz (1963) equations:

X = P(Y-X) X(1) = P (X(Q2)- X)) (1)
Y'=-XZ+RX-Y X(2)' = - X(1) X3) + R X(1) - X(2) ()
Z'=XY-BZ X(3) = X(1) X(2) - B X(3) (3)

where a (*) denotes a time derivative, and where X, Y, Z have been replaced with X(1),
X2), X(3) to make subsequent notation somewhat easier to follow; and where P =10, B =
8/3, and where stable fixed point (FP) solutions occur for R < 24.74 and chaos occurs
for R > 24.74.



Numerical integration of (1) — (3) with a 4™ order Runge-Kutta scheme requires
evaluation of the right hand side (rhs) four times per single time step. Before each
evaluation of the rhs, the current X’s are put in XT and the predicted values put in
XP. For the MC solutions of (1) — (3) in FORTRAN one has:

DO 100J=1, K {where K may be 100, 1000, 40,000, or some larger integer }
XP(@J,1) =P * (XT(J,2) - XT(J,1))

XP@J,2) = - XT(J,1) * XT(J,3) + R* XT(J,1) - XT(J,2)

XP(J,3) = XT(J,1) * XT(J,2) - B* XT(J,3)

100 continue

If one wanted to use 40,000 slightly different initial conditions to examine the error
growth in these equations, then with as many as 40,000 processors, one could be
performing the same calculations simultaneously. Thus, the MC approach is the only
practical way to deal with uncertainty in large scale grid models. Future multi-processor
computers will allow even larger sample sizes.

Figure 1 shows a deterministic solution of (1) — (3) with R = 14 (stable FP solution)
with no uncertainty in the initial conditions of [0, 1, 0] for [X1, X2, X3]. The results
match the theory that X(3) = R - 1 = 13 and the theory says that X(1) = X(2) =
5.888; but the result here is - 5.888.

3. The SDE Approach

The SDE approach and the 2" moments were introduced into atmospheric science by
Epstein(1969). The 3™ moment equations were introduced and discussed by Fleming
(1971). The general form of a deterministic set is given by:

Xi" =Y apgXpXq - SbipXp +C The SDE equations follow:
P.q p

Mi'= 2 @ipg(Hp Hg +0pg) - X bip Hp
p.q p

6ij = 2 aipg (Up Ojq + Hq Sjp + Tipg) + @ jpg (Hp Gig + Mg Gip + Tipg) - X (Dip 6jp + Dipoip)
p.q p

Tik =Y ajpq (Mp Tkig + Mg Tkp - Gpq ki + Aipg)
p.q
+ Awkpg (Mp Tjig + Mg Tjip - Gpg Gji + Ajipg )

+ aipg (Hp Tika * Hg Tjkp - Opq Gjk + Ajkpg ) - 2 (Djp Twap + bip Tjip + bipTiip)
p
where the (i) = the mean of X(i), ¢ (i,j) = the covariance of X(i) X(j), T(i,j, k) = the
3rd moment about the mean, and A (i, j, Kk, | ) is the 4™ moment about the mean.



The SDE approach has one significant advantage. The method allows a perfect blend of
true physics and mathematical statistics. The SDE method can quantify the evolution of
uncertainty in physical system in terms of the energetics of the physical system and the
‘uncertain energy’ of error growth (see Fleming, 1971).

The SDE approach has a significant disadvantage. The number of equations multiplies
rapidly. Only a few stochastic equations will be displayed here, but the general form
above can be used to arrive at the precise stochastic form for any deterministic system.

Just a few of the SDE equations for (1)-(3) are:

ML) = P (1(2) - u(2) (4)
H2) = - w1 HE) -e(1.3) + R p(1) - u2) (5)
HE3) = (1) u2) + o(1,2) - B u(3) (6)
6(1,1)’ =2 P (o(1,2) - o(1,1)) (7)

6(2,2) =-2[ () 6(2,3) +pB)e6(1,2) +T(1,2,3) - Ro(1,2) +06(2,2)] (8)
6(3,3) = 2[n() 0(2,3) + n(2) 6(1,3) + T(1,2,3) -Ba(3,3)] ©)
4. Comparison of MC, SD2, and SD3 with Lorenz set with R = 14

If one applies the SD2 equation set (above equations, but with third moments and
above assumed to be zero) and uses uncertainty in the variables given by an initial
variance of ¢(1,1) = 6(2,2) = 6(3,3) = 0.1, then one gets the result shown in Figure 2.
The results show that X(3) = R -1 = 13 is correct, but the results for X(1) = X(2) = 0.0,
not - 5.888. The theory says * 5.888, so perhaps the SD2 result is correct.

The MC result with the same variance used in SD2 is shown in Figure 3. The sample size
is 40,000 so this is the correct statistical result. The results for X(3) = 13 and for X(1) =
X(2) = -2.5 are correct. Thus, the SD2 result has failed to capture the negative shift.

Figure 4, shows the SD3 result with 3 moments included and a proper closure. The
results are correct for both the X(3) = 13 and X(1) = X(2) = -2.52. There is another
important attribute of the stochastic dynamic equations. For R = 14, a fixed point solution
in the Lorenz equations, the corresponding SD3 equations have the time tendency of the
statistical moments go to zero, so from (4) u(1) = u(2), from (7) one obtains ¢(1,1) =
¢(1,2), and combining these results with (6) one obtains the variance of X(1) = 6(1,1) =
B X(3) - X(1)?= (8/3) (13) - (2.52)® =28.32. Figure 5 indicates X(3) versus the
variance of X(1) and indeed this answer is correct.

Since X(3) becomes a constant = R -1, all 2" moments and higher with a “3” as an index
become zero. The eq. for 6(1,2)" = 0 (not shown) gives ¢(2,2) = 6(1,1) = 28.32. Figure



6 indicates the comparison of the MC and SD3 results for the variance of X(2) = 6(2,2)
versus time. One sees a very close agreement between the two approaches — both for
6(2,2) and for the explosive randomness that occurs even in this fixed point solution.

5. Comparison of MC and SD3 with Lorenz set with R =28

Figure 7 shows the deterministic solution of (1) — (3) for R = 28. The strange attractor
appears to be a formidable challenge for the SDE. Figure 8 indicates two problems
that appear in the MC results for this important third moment. Shown is T(1,2,3)
(equal to zero with R = 14) versus time (number of iterations).T(1,2,3) is the 3" moment
about the mean involving all three variables. One first sees the explosive randomness, far
greater than in the fixed point solution, then a modulation about zero for 1500 iterations,
then an excursion upward to a modulation of about 300 at 2000 iterations, and finally a
turbulent jostling about 200 from 3000 to 8000 iterations. There is the first problem of
the explosive randomness, then the determination of the final result.

The SD2 cannot pass the first problem of explosive randomness. This solution will blow
up. Thus the SD3 will be used to check this and other variables in the set. The details of
the closure for SD3 are included in a second paper at this Epstein Symposium. It will
simply be stated here that a closure can be found. X(3) is no longer a constant but an
integral part of the chaos. The mean values of X(1) and X(2) are both equal to zero,
and their statistics are symmetric. The symmetry implies that moments (2", 3", or 4™)
with an odd number of 1’s and 2’s in the indices will be equal to zero. Those with an
even number will be non-zero and likely quite large.

The results shown in Figure 9 are for X(3) as a function of time. The initial explosive
randomness is quite large in the MC run. The SD3 has captured that initial randomness
and the final result of the mean value for X(3) = 23.55 achieved by both solutions.

6. A complete statistical picture of the Lorenz strange attractor

The results of Figure 9 are encouraging, but the initial explosive randomness which
appears in Figs. 8 and 9 appears to present a challenge to completely understand the
statistical properties of the strange attractor. While moments can be computed via the MC
approach, how are the moments related to each other?

When a system is bounded and dissipative as the Lorenz system, all trajectories
eventually tend toward some bounded set of zero volume in phase space. Knowing this, it
was decided to solve the equations with a MC approach, flooding the attractor with a
very large sample size. To handle the turbulent jostling seen in Figure 8, it was
determined that a suitable time averaging of the MC samples would also be required.

Table 1 indicates the results of varying the sample size and varying the number of
consecutive iterations used in a time average. The variable shown is T(1,1,3) which has a
time mean of 400.6. Beyond a critical time averaging period, there was little difference
found in the time variance for a very large sample size. The results to be shown are for



the case of a sample size of 40,000 and a time average over the last 4000 iterations of a
run to 16,000 iterations.

All the statistical moments (e.g., up through fourth moments) can be computed from such
a MC calculation at each time step. Though many calculations are required, those
moments after the time averaging, are shown in Table 2 and 3. They become stable and
unchanging. There is another advantage of using both methods to arrive at fundamental
conclusions concerning this system. A very important fact is that the full SDE equations -
- written out up through third moments, with the fourth moment terms left in the right
hand side (without any assumptions about those moments,) provide exact
relationships. With moments unchanging, the left hand side of a full moment equation is
equal to zero. There are derivable dynamic relationships between the moments that are
exact! These are listed in Tables 2 and 3 as calculated MC values and computed SDE
values. The values from the MC averages in those Tables are approximate and could be
made even closer with a larger sample size.

One need not have made all those calculations! Armed with just two results from the MC
calculations, X(3) = 23.55 and its variance ¢(3,3) = 74.34 one has everything required
to derive all the moment values shown in Tables 2 and all but two of the 4™ moment
values in Table 3 — one needs only paper, pencil, and a hand calculator.

Only a few examples are permitted here. From (4) set to zero one has (1) = u(2); from
(5) set to zero one has: p(1) [ 1(3) + R-1]=0, but pu(3) # R -1 (unlike for R = 14),
thus p(1) = p(2) =0.

From (7) and (6) set to zero, one has ¢(1,1) = 6(1,2) = B X(3) = (8/3) (23.55) = 62.8.
From (9) set to zero, one has 2 [ n(1) 6(2,3) + n(2) 6(1,3) + T(1,2,3) -Bs6(3,3)] =0
or T(1,2,3) =B 6(3,3) =(8/3) (74.34) = 198.2.

All of these values agree with the Table results. One can continue to use one result to
build upon another, and many other interesting relationships can be found. Another non-
anticipated result is the relation involving all three variances (which can be deduced
from the equations and verified from the Table results):

6(2,2)= o(1,1) [R - p(3)]-Ba(3,3).

7. Summary

The MC approach is valuable today and will become even more so in the future with
further advances in multi-processor computers. Such MC predictions will be more
accurate, and have the capability to roughly measure the uncertainty associated with that
prediction. Our socio-economic system must deal with both accuracy and uncertainty.

The full SDE represent a perfect blend of physics and statistical relationships. They offer
greater insight as a research tool. Together with the MC approach, this allows one to
delve more deeply into the nonlinear nature of physical systems. Thank you, Edward S.
Epstein for your contributions!
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Tables

Size # of consecutive iterations used in time average
250 1000 4000

100 6931 8302 9470

200 1812 1765 1856

500 1011 831 859

1000 453 388 416

2000 258 248 221

5000 89 91 96

40000 8 10 11

Table 1. Time variance of T(1,1,3) as a function of sample size and
number of consecutive iterations used in time average



MC SD3 MC SD3
Moment | Var# | Value |Value |Moment | Var# |Value |Value
u(1) X(1) -001 | .000 |T(1,1,1) | X(10) | .060 .000
u@) | X@ |-001 |.000 |T(1,1,2) | X(11) | 0.060 | .000
H@3) | X(13) | 2355 | 2355 |T(1,1,3) | X(12) | 400.6 | 400.6
o(1,1) | X(4) |628 |628 |T(12,2)| X(13) | .040 | .000
6(1,2) | X(5) | 628 | 628 |T(1,2,3) | X(14) | 198.2 | 198.2
6(1,3) | X(6) | -005 | -000 |T(1,33) | X(15) | -.080 | -.000
6(2,2) | X(7) | 8120 | 81.20 |T(2,2,2) | X(16) | .009 | .000
6(2,3) | X(8) | .001 | -000 |T(2,23) | X(17) | 84.83 | 84.83
6(3,3) | X(9) | 7434 | 7434 |T(2,3,3) | X(18) | -.060 | -.000
T(3,3,3) | X(19) | 132.4 | 132.4

Table 2. Calculated MC values and computed SD3 values from full
equations for R = 28




MC SD3 MC SD3
Moment | Var# |Value |Value | Moment | Var# |Value | Value
AM1,1,1,1) | X(20) |9060.1 | 9060.1 | M1,2,2,3) | X(27) | -15 | 0.0
M1,1,1,2) | X(21) |9060.2 | 9060.1 | A(1,2,3,3) | X(28) |5021.5 | 5021.6
MLLL3)  X(22) | -14 |00 | AM1,3,3,3)|X(29) |-12 |00
M1,1,2,2) | X(23) |10735 | 10735 |1(2,2,2,2) | X(30)
M1,1,2,3) | X(24) |-003 | 0.0  |(2,2,2,3) | X(31)
M1,1,3,3) | X(25) |6712.5 | 6713.0 | 1(2,2,3,3) | X(32)
M1,2,2,2) | X(26) | 13774 | 13774 |1(2,3,3,3) | X(33)
2(3,3,3,3) | X(34)

Table 3. Calculated MC values and computed SD3 values for R = 29.

The 4™ moments X(20) and X(30 through X(34) are not
required in the SD3.
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Figure 1. Initial conditionsare [ 0,1,0 ] for [ X1, X2, X3] R=14
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X1 vs X3 R=14 M.C.= 40,000 Var=0.1
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Figure 3. MC: same initial conditions as SD2; X1 = X2 = —-2.52
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X1 vs X3 R=14 Var=0.1 SD3
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Figure 4. SD3: correct X3 = 13; also correct for X1 = X2 =-2.52
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X3 Vs Var(1) R=14 Var=0.1 SD3
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Figure 5. Correct variance of X1 = 28.32; matches SD3 derived value
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SD3 Lorenz R=14 Sig(2,2)= X(7)
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Figure 6. MC and SD3 agree on both initial “explosive randomness”
and final value of ¢(2,2) = 28.32
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X1 Versus X3 R=28 Deterministic
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Figure 7 Deterministic solution [0,1,0] R =28. A formidable challenge!
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Figure 8. T (1,2,3) jostling around 200 with R =28 [This = 0.0 for R 14]
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Figure 9. X(3) as a function of time: MC and SD3 in excellent agreement
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