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1.   Introduction 
 
One can deal with the uncertainty in initial conditions of a numerical model by two 
different approaches. The Monte Carlo (MC) approach use a randomly chosen set of  
initial states, usually obtained from a random Gaussian distribution, to evaluate the 
impact of uncertainty in initial conditions for the time integration of a physical system. 
The Stochastic Dynamic Equations (SDE) approach begins with an infinite ensemble of 
initial states represented simply by the variance of the initial conditions. The MC is thus 
an approximation of the SDE method. However, the SDE has a closure issue. Time 
derivatives of second moments also requires knowledge of third moments,  time 
derivatives of third moments involves fourth moments, and so on. 
 
This review will provide a simple example of the two methods for the original Lorenz 
chaos equations. This equation set can produce a simple fixed point solution or a complex 
chaotic solution – examples of both solutions with both methods will be demonstrated. 
 
There is a method of using both approaches to fully dissect the nonlinearity of a system 
of equations. This is rarely discussed, but demonstrates the power of the stochastic 
dynamic equation set. That example will be reproduced here. 
 
2.   The Monte Carlo Approach 
 
For large model applications such as weather and climate models, the MC method is the 
only practical approach. The proper programming of Monte Carlo models can make 
maximum use of the current multi-processor computers. A simple demonstration of the 
MC method for the Lorenz (1963) equations: 
 
X•  =  P ( Y -X )                           X(1)•   =  P ( X(2) - X(1) )                                   (1) 
 
Y• =  - X Z + R X - Y                  X(2)•  =  - X(1) X(3) + R X(1) - X(2)                 (2) 
 
Z• =  X Y - B Z                             X(3)•  =  X(1) X(2) - B X(3)                              (3) 
 
where a (•) denotes a time derivative, and where X, Y, Z have been replaced with X(1), 
X2), X(3) to make subsequent notation somewhat easier to follow; and where P = 10, B = 
8/3, and where stable fixed point (FP) solutions occur for R < 24.74 and chaos occurs 
for R  ≥  24.74. 
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Numerical integration of (1) – (3) with a 4th order Runge-Kutta scheme requires 
evaluation of the right hand side (rhs) four times per single time step. Before each 
evaluation of the rhs, the current X’s are put in XT and the predicted values put in 
XP. For the MC solutions of (1) – (3) in FORTRAN one has: 
 
DO 100 J = 1, K      { where K may be 100, 1000, 40,000, or some larger integer } 
XP(J,1) = P * (XT(J,2) - XT(J,1)) 
XP(J,2) =  - XT(J,1) * XT(J,3) +  R * XT(J,1) - XT(J,2) 
XP(J,3) = XT(J,1) * XT(J,2) - B * XT(J,3) 
100 continue 
 
If one wanted to use 40,000 slightly different initial conditions to examine the error 
growth in these equations, then with as many as 40,000 processors, one could be 
performing the same calculations simultaneously. Thus, the MC approach is the only 
practical way to deal with uncertainty in large scale grid models. Future multi-processor 
computers will allow even larger sample sizes. 
 
Figure 1 shows a deterministic solution of (1) – (3) with R = 14 (stable FP solution) 
with no uncertainty in the initial conditions of [0, 1, 0] for [X1, X2, X3]. The results 
match the theory that X(3) = R - 1 = 13 and the theory says that X(1) = X(2) =  ± 
5.888; but the result here is  - 5.888. 
 
3.   The SDE Approach 
 
The SDE approach and the 2nd moments were introduced into atmospheric science by 
Epstein(1969). The 3rd moment equations were introduced and discussed by Fleming 
(1971). The general form of a deterministic set is given by: 
 
Xi˙  =  ∑ a ipq Xp Xq  -   ∑ b ip Xp  + c I               The SDE equations follow: 
             p,q                          p 
 
µi˙ =  ∑  a ipq ( µp µq  + σpq )   -  ∑ bip µp    
          p,q                                                p 
 
σij˙ =  ∑ a ipq (µp σjq + µq σjp + Tjpq)  + a jpq (µp σiq + µq σip + Tipq)  - ∑ (bip σjp + bipσip)   
           p,q                                                                                                           p 
 
Tjkl˙ = ∑  a jpq ( µp Tklq + µq Tklp   -  σpq σkl  +  λklpq ) 
            p,q 
           +  a kpq ( µp Tjlq + µq Tjlp   -  σpq σjl  +  λjlpq ) 
 
           +  a lpq ( µp Tjkq + µq Tjkp   -  σpq σjk  +  λjkpq )  - ∑ ( bjp Tklp +  bkp Tjlp + blpTjkp) 
                                                                                             p 
where the µ(i) = the mean of X(i),  σ (i,j) = the covariance of X(i) X(j) , T(i,j,k) = the 
3rd moment about the mean, and λ (i, j, k, l ) is the 4th moment about the mean. 
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The SDE approach has one significant advantage. The method allows a perfect blend of 
true physics and mathematical statistics. The SDE method can quantify the evolution of 
uncertainty in physical system in terms of the energetics of the physical system and the 
‘uncertain energy’ of error growth (see Fleming, 1971). 
 
The SDE approach has a significant disadvantage. The number of equations multiplies 
rapidly. Only a few stochastic equations will be displayed here, but the general form 
above can be used to arrive at the precise stochastic form for any deterministic system.  
                                                                                                
Just a few of the SDE equations for (1)-(3) are: 
 
µ(1)•  =  P  (µ(2) - µ(1))                                                                                        (4) 
             
µ(2)•  =  - µ(1) µ(3)   - σ(1,3) + R µ(1) - µ(2)                                                       (5) 
 
µ(3)•  =  µ(1) µ(2)  +  σ(1,2)  - B µ(3)                                                                   (6) 
 
σ(1,1)• = 2 P ( σ(1,2)  - σ(1,1))                                                                              (7)                                             
 
σ(2,2)• = - 2 [ µ(1) σ(2,3)  + µ(3) σ(1,2)  + T(1,2,3)  -  R σ(1,2)  + σ(2,2) ]         (8) 
 
σ(3,3)• =   2 [ µ(1) σ(2,3) + µ(2) σ(1,3)  +  T(1,2,3)  - B σ(3,3) ]                          (9) 
 
4.   Comparison of MC, SD2, and SD3 with Lorenz set with R = 14 
        
If one applies the SD2 equation set (above equations, but with third moments and 
above assumed to be zero) and uses uncertainty in the variables given by an initial 
variance of  σ(1,1) =  σ(2,2) = σ(3,3) = 0.1, then one gets the result shown in Figure 2.  
The results show that X(3) = R -1 = 13 is correct, but the results for X(1) = X(2) = 0.0, 
not  - 5.888. The theory says  ± 5.888, so perhaps the SD2 result is correct.  
  
The MC result with the same variance used in SD2 is shown in Figure 3. The sample size 
is 40,000 so this is the correct statistical result. The results for X(3) = 13 and  for X(1) = 
X(2) = -2.5 are correct. Thus,  the SD2 result has failed to capture the negative shift. 
  
Figure 4, shows the SD3 result with 3rd moments included and a proper closure. The 
results are correct for both the X(3) = 13 and X(1) = X(2) = -2.52. There is another 
important attribute of the stochastic dynamic equations. For R = 14, a fixed point solution 
in the Lorenz equations,  the corresponding SD3 equations have the time tendency of the 
statistical moments go to zero, so from (4)  µ(1) = µ(2), from (7) one obtains σ(1,1) = 
σ(1,2), and combining these results with (6) one obtains the variance of X(1)  = σ(1,1) = 
B X(3)  - X(1)2 =  (8/3) (13) - (2.52)2  = 28.32.  Figure 5 indicates X(3) versus the 
variance of  X(1) and indeed this answer is correct. 
 
Since X(3) becomes a constant = R -1 , all 2nd moments and higher with a “3” as an index 
become zero. The eq. for σ(1,2)˙ = 0 (not shown) gives σ(2,2) = σ(1,1) = 28.32.  Figure 
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6 indicates the comparison of the MC and SD3 results for the variance of X(2) = σ(2,2) 
versus time. One sees a very close agreement between the two approaches – both for 
σ(2,2) and for the explosive randomness that occurs even in this fixed point solution. 
 
5.   Comparison of MC and SD3 with Lorenz set with R = 28 
        
Figure 7 shows the deterministic solution of (1) – (3) for R = 28. The strange attractor 
appears to be a formidable challenge for the SDE.  Figure 8 indicates two problems 
that appear in the MC results for this important third moment. Shown is T(1,2,3) 
(equal to zero with R = 14) versus time (number of iterations).T(1,2,3) is the 3rd moment 
about the mean involving all three variables. One first sees the explosive randomness, far 
greater than in the fixed point solution, then a modulation about zero for 1500 iterations, 
then an excursion upward to a modulation of about 300 at 2000 iterations, and finally a 
turbulent jostling about 200 from 3000 to 8000 iterations. There is the first problem of 
the explosive randomness, then the determination of the final result. 
 
The SD2 cannot pass the first problem of explosive randomness. This solution will blow 
up. Thus the SD3 will be used to check this and other variables in the set. The details of 
the closure for SD3 are included in a second  paper at this Epstein Symposium. It will 
simply be stated here that a closure can be found. X(3) is no longer a constant but an 
integral part of the chaos. The mean values of X(1) and X(2) are both equal to zero, 
and their statistics are symmetric. The symmetry implies that moments (2nd, 3rd, or 4th) 
with an odd number of 1’s and 2’s in the indices will be equal to zero. Those with an 
even number will be non-zero and likely quite large. 
 
The results shown in Figure 9 are for X(3) as a function of time. The initial explosive 
randomness is quite large in the MC run. The SD3 has captured that initial randomness 
and the final result of the mean value for X(3) = 23.55 achieved by both solutions. 
 
6.   A complete statistical picture of the Lorenz strange attractor 
 
The results of Figure 9 are encouraging, but the initial explosive randomness which 
appears in Figs. 8 and 9 appears to present a challenge to completely understand the 
statistical properties of the strange attractor. While moments can be computed via the MC 
approach, how are the moments related to each other?  
 
When a system is bounded and dissipative as the Lorenz system, all trajectories 
eventually tend toward some bounded set of zero volume in phase space. Knowing this, it 
was decided to solve the equations with a MC approach, flooding  the attractor with a  
very large sample size. To handle the turbulent jostling seen in Figure 8, it was 
determined that a suitable time averaging of the MC samples would also be required.  
 
Table 1 indicates the results of varying the sample size and varying the number of 
consecutive iterations used in a time average. The variable shown is T(1,1,3) which has a 
time mean of 400.6. Beyond a critical time averaging period, there was little difference 
found in the time variance for a very large sample size. The results to be shown are for 
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the case of a sample size of 40,000 and a time average over the last 4000 iterations of a 
run to 16,000 iterations. 
 
All the statistical moments (e.g., up through fourth moments) can be computed from such 
a MC calculation at each time step. Though many calculations are required, those 
moments after the time averaging, are shown in Table 2 and 3. They become stable and 
unchanging. There is another  advantage of using both methods to arrive at fundamental 
conclusions concerning this system. A very important fact is that the full SDE equations -
- written out up through third moments, with the fourth moment terms left in the right 
hand side (without any assumptions about those moments,) provide exact 
relationships. With moments unchanging, the left hand side of  a full moment equation is 
equal to zero. There are derivable dynamic relationships between the moments that are 
exact! These are listed in Tables 2 and 3 as calculated MC values and computed SDE 
values. The values from the MC averages in those Tables are approximate and could be 
made even closer with a larger sample size. 
 
One need not have made all those calculations! Armed with just two results from the MC 
calculations, X(3)  = 23.55 and its variance σ(3,3) = 74.34  one has everything required  
to derive all the moment values shown in Tables 2 and all but two of the 4th moment 
values in Table 3 – one needs only paper, pencil, and a hand calculator. 
 
Only a few examples are permitted here. From  (4) set to zero one has µ(1) = µ(2); from 
(5) set to zero one has: µ(1) [ µ(3) + R -1 ] = 0, but  µ(3)  ≠  R - 1 (unlike for R = 14), 
thus  µ(1) = µ(2) = 0. 
 
From (7) and (6) set to zero, one has σ(1,1) = σ(1,2) = B X(3)  =  (8/3) (23.55) = 62.8. 
From (9) set to zero, one has 2 [ µ(1) σ(2,3) + µ(2) σ(1,3)  +  T(1,2,3)  - B σ(3,3) ]  = 0 
or  T(1,2,3)  = B  σ(3,3)  = (8/3) (74.34) = 198.2.  
 
All of these values  agree with the Table results. One can continue to use one result to 
build upon another, and many other interesting relationships can be found. Another non-
anticipated result  is the relation involving all three variances (which can be deduced 
from the equations and verified from the Table results):  
σ(2,2) =  σ(1,1)  [ R  - µ(3) ] – B σ(3,3).  
 
7.   Summary 
 
The MC approach is valuable today and will become even more so in the future with 
further advances in multi-processor computers. Such MC predictions will be more 
accurate, and  have the capability to roughly measure the uncertainty associated with that 
prediction. Our socio-economic system must deal with both accuracy and uncertainty. 
 
The full SDE represent a perfect blend of physics and statistical relationships. They offer 
greater insight as a research tool. Together with the MC approach, this allows one to 
delve more deeply into the nonlinear nature of physical systems. Thank you, Edward S. 
Epstein for your contributions! 
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Tables 
 
Size  # of consecutive iterations used in time average  
 
  250   1000   4000 
100  6931   8302   9470 
 
200  1812   1765   1856 
 
500  1011     831     859 
 
1000    453     388     416 
 
2000    258     248     221 
 
5000     89                  91                          96 
 
40000      8      10      11 
 
Table 1.  Time variance of T(1,1,3) as a function of sample size and  
                 number of consecutive iterations used in time average 
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Moment 

 
Var # 

 MC 
Value 
 

 SD3 
Value 

 
Moment 

 
 Var # 

  MC  
Value 
 

  SD3 
Value 
 

 
  µ(1) 
 

 
 X(1) 

 
 -.001 
 

 
 .000 

 
T(1,1,1) 

 
 X(10) 

 
 .060 

 
 .000 

 
  µ(2) 
 

 
 X(2) 

 
 -.001 

 
 .000 

 
T(1,1,2) 

 
 X(11) 

 
 0.060 

 
 .000 

 
  µ(3) 
 

 
 X(13) 

 
 23.55 

  
 23.55 

 
T(1,1,3) 

 
 X(12) 

 
 400.6 

 
 400.6 

 
 σ(1,1) 
 

 
 X(4) 

 
 62.8 

 
 62.8 

 
T(1,2,,2) 

 
 X(13) 

 
 .040 

 
 .000 

 
σ(1,2) 
 

 
 X(5) 

 
 62.8 

 
 62.8 

 
T(1,2,3) 

 
 X(14) 

 
 198.2 

 
 198.2 

 
 σ(1,3) 
 

 
 X(6) 

 
 -.005 

 
 -.000 

 
T(1,3,3) 

 
 X(15) 

 
 -.080 

 
 -.000 

 
 σ(2,2) 
 

 
 X(7) 
 

 
 81.20 

 
 81.20 

 
T(2,2,2) 

 
 X(16) 

 
 .009 

 
 .000 

 
σ(2,3) 
 

 
 X(8) 

 
 .001 
 

 
 -.000 

 
T(2,2,3) 

 
 X(17) 

 
 84.83 

 
 84.83 

 
σ(3,3) 
 

 
 X(9) 

 
 74.34 

 
 74.34 

 
T(2,3,3) 

 
 X(18) 

 
 -.060 

 
 -.000 
 

 
 
  

    
T(3,3,3) 

 
 X(19) 

 
 132.4 

 
 132.4 

 
Table 2.  Calculated MC values and computed SD3 values from full  
                 equations for R = 28 
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Moment 

 
Var # 

 MC 
Value 
 

 SD3 
Value 

 
Moment 

 
 Var # 

  MC  
Value 
 

  SD3 
Value 
 

 
λ(1,1,1,1) 
 

 
X(20) 

 
9060.1 

 
9060.1 

 
λ(1,2,2,3) 
 

 
X(27) 

 
 -.15 

 
 0.0 

 
λ(1,1,1,2) 
 

 
X(21) 

 
9060.2 

 
9060.1 

 
λ(1,2,3,3) 
 

 
X(28) 

 
5021.5 

 
5021.6 

 
λ(1,1,1,3) 
 

 
X(22) 

 
 -.14 

 
 0.0 

 
λ(1,3,3,3) 
 

 
X(29) 

 
 -1.2 

 
 0.0 

 
λ(1,1,2,2) 
 

 
X(23) 

 
10735 
 

 
10735 

 
λ(2,2,2,2) 
 

 
X(30) 

  

 
λ(1,1,2,3) 
 

 
X(24) 

 
-.003 

 
 0.0 

 
λ(2,2,2,3) 
 

 
X(31) 

  

 
λ(1,1,3,3) 
 

 
X(25) 

 
6712.5 

 
6713.0 

 
λ(2,2,3,3) 
 

 
X(32) 

  

 
λ(1,2,2,2) 
 

 
X(26) 

 
13774 

 
13774 

 
λ(2,3,3,3) 
 

 
X(33) 

  

 
  

    
λ(3,3,3,3) 
 

 
X(34) 

  

 
Table 3.  Calculated MC values and computed SD3 values for R = 29.                    
                The 4th moments X(20) and X(30 through X(34) are not  
                 required in the SD3. 
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Figure 1.  Initial conditions are [ 0,1,0 ] for [ X1, X2, X3 ]  R = 14 
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Figure 2.  SD2 initial conditions as Fig 1; variance of each variable = 0.1  
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Figure 3.  MC: same initial conditions as SD2; X1 = X2 =  – 2.52 
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Figure 4. SD3: correct X3 = 13; also correct for X1 = X2 = – 2.52   
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Figure 5. Correct variance of X1 = 28.32; matches SD3 derived value 
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Figure 6. MC and SD3 agree on both  initial “explosive randomness”  
                 and final value of σ(2,2) = 28.32  
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Figure 7 Deterministic solution [0,1,0]  R = 28.  A  formidable challenge! 
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Figure 8.  Τ (1,2,3) jostling around 200 with R = 28 [This = 0.0 for R 14] 
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Figure 9. X(3) as a function of time: MC and SD3 in excellent agreement 
 
 
 
 


