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1.   Introduction 
 
The Stochastic Dynamic Equations (SDE) approach to dealing with uncertainty in initial 
conditions in numerical models, and the 2nd moments associated with them, was 
introduced into atmospheric science by Epstein (1969). The 3rd moment equations were 
outlined and discussed by Fleming (1971). The other major approach to dealing with such 
uncertainty is the Monte Carlo (MC) method. The MC approach draws upon a finite 
number of random deviates, usually from a normal distribution with a pre-defined 
variance. The SDE approach begins with an infinite ensemble of initial states, with that 
same predefined variance. The MC is thus an approximation of the SDE method. 
However, the SDE has a closure issue. Time derivatives of second moments also requires 
knowledge of third moments,  time derivatives of third moments involves fourth 
moments, and so on. 
 
In a recent paper, Fleming (2014) reviewed the two approaches with uncertainty in the 
initial conditions of the Lorenz original strange attractor equations ( Lorenz, 1963). In 
that paper the use of both methods revealed the full statistical ensemble of relationships 
between the variables and moments in that equation set.   
 
When a system is bounded and dissipative as the Lorenz system, all trajectories 
eventually tend toward some bounded set of zero volume in phase space. Using this fact, 
a long integration of the equations over time was used with a very large MC sample size. 
Flooding the attractor with many initial states, the time variance of a range of time 
averaging periods was used to judge the time independence of the moments. Combining 
the MC values with the ‘full’ SDE equation set produces the complete statistical 
relationships between the variables and moments. The ‘full’ SDE equation set includes 
4th moments in 3rd moment equations, and with no assumptions on either of the moments.  
 
This data set then affords the possibility to close the SDE equations set for those bound 
and dissipative systems. The Lorenz equations have both fixed point and chaotic 
solutions. The closure of the equations for both solution types is presented here. The 
closure methodology is slightly different for each solution type. One must address two 
issues for each type of solution: both the issue of initial explosive moment dispersion in 
phase space, and the final time independent value of the moments in phase space. 
 
Examples are shown which compare the high resolution MC solutions with the SDE 
equation solutions  with the proper closure. Both issues are successfully addressed by the 
closure technique implemented as seen in the Figures presented. 
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2.   Equations and nomenclature 
 
The general form of a quadratic nonlinear deterministic data set and the SDE counterpart 
is provided below; the dummy indices p,q represent pairs of nonlinear terms): 
 
Xi •  =  ∑ a ipq Xp Xq  -   ∑ b ip Xp  + ci               The SDE equations follow: 
             p,q                        p 
µi •  =  ∑  a ipq ( µp µq  + σpq )   -   ∑ bip µp    
          p,q                                             p 
 
σij

•   =  ∑ a ipq (µp σjq + µq σjp + Tjpq)  + a jpq (µp σiq + µq σip + Tipq)  - ∑ (bip σjp + bjpσip)   
           p,q                                                                                                          p 
 
Tijk 

•    = ∑  {a ipq ( µp Tjkq + µq Tjkp   -  σpq σjk  +  λjkpq ) 
              p,q 
                   +  a jpq ( µp Tikq + µq Tikp   -  σpq σik  +  λikpq ) 
 
          +  a kpq ( µp Tijq + µq Tijp   -  σpq σij +  λijpq )} - ∑ ( bip Tjkp +  bjp Tikp + bkpTijp) 
                                                                                         p 
where the µ(i) = the mean of X(i),  σ (i,j) = the covariance of X(i) X(j) , T(i,j,k) = the 
3rd moment about the mean, and λ (i, j, k, l ) is the 4th moment about the mean. 
 
The Lorenz equations for his strange attractor offer a significant test for the closure 
of the SDE equations. These equations are: 

 X·  =  P (Y - X)                                                                                                      (1)       

 Y·   =  - X Z + R X - Y                                                                                           (2)        

 Z·   =  X Y - B Z                                                                                                       (3) 
where a ( • ) denotes a time derivative, and where X, Y, Z will be  replaced with X(1), 
X2), X(3) to make subsequent notation somewhat easier to follow; and where P = 10, B = 
8/3, and where stable fixed point (FP) solutions occur for R < 24.74 and chaos occurs 
for R equal to or greater than  24.74. 
 
The notation used here is: 
 
X( i ) for i = 1 to 3 for the means of  [ X, Y, Z ]  
 
X( j ) for j = 4 to 9  for the covariance's: σ(1,1), σ(1,2), σ(1,3), σ(2,2), σ(2,3), σ(3,3) 
 
X( k ) for k = 10 to 19 for the third moments: T( 1,1,1), T(1,1,2), T(1,1,3), T(1,2,2), 
 T(1,2,3), T(1,3,3), T(2,2,2), T(2,2,3), T(2,3,3), T(3,3,3). 
 
Solutions for equations (1) – (3) and the stochastic counterparts were performed in 
double precision with a fourth order Runge-Kutta scheme with a time step of 0.01. 
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3.   The stable fixed point solutions using R = 14 
 
The deterministic solution of (1) –(3) with initial conditions for [X(1), X(2), X(3)]   = 
[0,1,0] and the value of R = 14 produces the theoretical result of X(3) = R - 1 = 13, and 
X(1) = X(2) = ± 5.888. The MC result (with a very large sample size of 40,000) with the 
same initial conditions and a variance of 0.1 for each of the variables produces the result 
shown in Figure 1.  
 
The value of X(1) = X(2) =  – 2.52, and the value of X(3), after some initial wandering,  
is indeed 13, a constant value. 
 
Because Z = X(3) evolves to a constant value, all Z-deviates go to zero, so 2nd, 3rd, and 
4th moments with one or more 3’s as an index will tend to zero. Thus, for example:  
σ(1,3) = σ(2,3) = σ(3,3) = 0.0. The MC results verify this and the further results σ(1,1) = 
σ(1,2) = σ(2,2) = 28.316.  Fleming (2014) showed that the SDE equations, with the time 
tendency set to zero, reproduce the MC results. Just a few examples are shown below. 
 
X(1)•  = µ(1) •  =  P  (µ(2) - µ(1))                                                                                   (4) 
             
X(2)•   = µ(2)•  =  - µ(1) µ(3)   - σ(1,3) + R µ(1) - µ(2)                                                  (5) 
 
X(3)•   = µ(3)•  =  µ(1) µ(2)  +  σ(1,2)  - B µ(3)                                                             (6) 
 
X(4)   = σ(1,1)• = 2 P ( σ(1,2)  - σ(1,1))                                                                         (7)                                             
 
X(7)•  = σ(2,2)• = - 2 [ µ(1) σ(2,3)  + µ(3) σ(1,2)  + T(1,2,3)  -  R σ(1,2)  + σ(2,2) ]    (8) 
 
X(9)•  = σ(3,3)• =  2 [ µ(1) σ(2,3) + µ(2) σ(1,3)  +  T(1,2,3)  - B σ(3,3) ]                      (9) 
 
From the time tendency of (4) = 0, one obtains X(1) = X(2). From (5) one finds: 
- X(1)X(3) + R X(1) –X(2) = 0  or  [- X(3) + R  - 1)] X(1) = 0 or X(3) = R - 1 
 
From (6) one finds: X(1)2  + X(5) = B X(3) = B (R - 1) and from (7),  X(4) = X(5). 
Combining results from (6) and (7) one has: 
 X(4) = B (R - 1)  - X(1)2  =  ( 8/3) (13)  - [ (- 2.52)2 ] = 34.6667  - 6.3504 = 28.316 
 
The MC results give all 3rd moments = 0 except:  
T(1,1,1) = T(1,1,2) = T(1,2,2) = T(2,2,2) = 142.723 
 
The MC results give all 4th moments = 0 except: 
λ(1,1,1,1) = λ(1,1,1,2) = λ(1,1,2,2) = λ(1,2,2,2) = λ(2,2,2,2) = 1521.1 
 
A further progression through the full SDE equations and no assumptions on the 4th 
moments reveals the same values for the 3rd and 4th moments as the MC results; e.g., 
λ(1,1,1,2) = X(4) [ 4B (R - 1)  -  3X(4) ]  = (28.316) [ 53.719] = 1521.1 
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These 4th moments are not “normal”. If they were, then for example:  
λ(1,1,2,2) = σ(1,1) σ(2,2)  +  2σ(1,2) σ(1,2) = 3 (28.316)2  = 2405.4. Thus the 4th 
moments are platykurtic (a broader distribution about the mean) with the ratio of   
λ / λ normal < 1. Here, this ratio is referred to as FF = 1521.1 / 2405.4 = 0.63237. 
 
4.   Closure of the SDE for fixed point solutions 
 
The closure of the SDE equation set for these fixed point solutions should be fairly easy – 
and it is. However, the initial explosive randomness must be handled. The main idea in 
this closure  is to let the physics drive the results. 
 
The formerly used quasi-normal scheme (which had limited value) was borrowed from 
past turbulence theory. This assumes the normal form for the 4th moments in a 3rd 
moment prediction equation and adds  a damping term (DK) to that equation; e.g.,  
T(i, j, k)• = …  -  (DK) T(i,j,k). This would not work here as all the 4th moments are 
platykurtic, not “normal”. 
 
The closure here has a few steps. First, the non-zero 4th moments all have the same FF 
value of 0.63237, so the normal form of those 4th moments are multiplied by the forcing 
coefficient FF. Second, for consistency, this is done for all the 4th moments – even those 
that tend to zero, but may have appreciable values in the early transition phase. For 
example, λ(1,1,3,3) is replaced by (FF) [σ(1,1) σ(3,3)  + 2 σ(1,3) σ(1,3)] even though 
σ(1,3) and σ(3,3) are tending toward zero. The third point is that no damping factor is 
applied to those 3rd moment equations with 4th moments that go to zero – the physics will 
drive the results.  
 
The fourth and final point is that a damping term is applied to those 3rd moment equations 
that contain a non-zero 4th moment to cope with the initial randomness encountered. 
Iterative calculations found that values of DK > 11.72 gave correct answers for all the 
variables. The value used for the fixed point solutions shown here was DK = 12, but 
values as large as five times this value gave the same results. 
 
Figure 2 shows the calculation of the MC solution over time versus that of the SD3 
equations closed as discussed above. The MC sample size was as before equal to 40,000. 
One can be assured that the MC solution is statistically correct with that large a sample 
size. Fig. 2 indicates that the two solutions agree in the final value of σ(2,2)  = 28.316. 
 
Equally important, the initial explosive randomness shown in Fig. 2 is correctly handled. 
This initial randomness is seen in all the variables to some degree, and other examples are 
not shown to limit the length of this paper. All examples show the same results of  the 
closure matching the MC results. 
 
More examples will be shown in the next Section where, for chaos solutions, the  
explosive randomness is quite severe. 
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5.   Closure of the SDE for chaotic  solutions 
 
The deterministic solution for the Lorenz equations for R = 28 is shown in Figure 3. This 
represents a significant challenge for the SDE. More than the obvious visual changes 
from the fixed point solution, Z = X(3) ≠ R-1 and the Z-deviates are important. Also the 
probability distributions of X(1) and X(2) are symmetric. 
 
The time averaged MC calculations and the matching SDE results derived from the full 
equation set are shown in Tables 1 and 2. These include a 40,000 sample size and time 
averages over 4000 iterations for the MC as discussed in Fleming(2014). All of these 
time averaged moment values are now constant. They exactly balance the left hand 
(LHS) of the SDE equations, the time tendency, set to zero. No assumptions have been 
made within the SDE equations. 
 
The MC and SDE calculations show that X(1) = X(2) = 0.0. The statistical symmetry of 
X(1) and X(2) imply that moments (2nd, 3rd, and 4th) with an odd number of 1’s and 2’s in 
the indices will approach zero over time. 
 
The Tables show that only five 4th moments are active (non-zero) and these occur in 
just four 3rd moment prediction equations. Just these equations are shown below: 
 
X(12)• = T(1,1,3)• = 2P [X(14) - X(12)]  + X(1) X(11) + X(2) X(10) - B X(12) 
                -  σ(1,1) σ(1,2)  +  λ(1,1,1,2)                                                                       (10) 
 
X(14)• = T(1,2,3)• =  P [X(17)  - X(14)]  - X(1) X(15) - X(3) X(12) + R X(12) 
               +  X(1) X(13) + X(2) X(11) - (B + 1) X(14)   
                +  σ(1,3) σ(1,3)  -  σ(1,2) σ(1,2)  +   λ(1,1,2,2)  - λ(1,1,3,3)                       (11)                                
 
X(17)• = T(2,2,3)• =  - 2 [X(1) X(18) + X(3) X(14)]  +  2R X(14)  + (2 - B) X(17) 
              + X((1) X(16) + X(2) X(13)  - 2 [ - σ(1,3) σ(2,3) +  λ(1,2,3,3) ]       
               -  σ(1,2) σ(2,2)  +  λ(1,2,2,2)                                                                        (12)                                                           
 
X(19)• = T(3,3,3)• = 3 [ X(1) X(18) + X(2) X(15) - B X(19) ] 
                                + 3 [ - σ(1,2) σ(3,3)  +  λ(1,2,3,3) ]                                             (13) 
 
Now one can examine the 4th moment terms in the above equations from Table 2. These 
are quite different in the chaos case versus what was seen for the fixed point solutions. 
The non-zero 4th moments are all different and their status relative to “normal” 4th 
moments can be established.  
 
From (10), there is a single 4th moment, λ(1,1,1,2) which has the value from Table 2  
of  9060.1 The normal form of  λ(1,1,1,2) = 3 σ(1,1) σ(1,2) = (3)(62.80)2 = 11,831.5;  
therefore, FF1 = 9060.1 / 11,831.5 = 0.766. This λ is platykurtic. 
 
From (11), there are two 4th moments, λ(1,1,2,2) and  λ(1,1,3,3)  which have the values 
from Table 2 of 10,735 and 6,711.0 respectively. The normal form of  λ(1,1,2,2)  =  
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 σ(1,1) σ(2,2)  + 2 σ(1,2) σ(1,2) = (62.8) (81.2) + (2)(62.8)2 = 12,987; therefore, FF2 = 
10,735 / 12,987= 0.827.  The normal form of  λ(1,1,3,3)  =  σ(1,1) σ(3,3)  + 2 σ(1,3)2  = 
(62.8) (74.34) = 4,668.6, since σ(1,3)  = 0. FF3 = 6,711.0 / 4,668.6 = 1.44 and  
 λ(1,1,3,3) has the ratio λ / λ normal > 1 and is leptokurtic (more peaked near the mean). 
 
From (12), there are two 4th moments, λ(1,2,2,2) and  λ(1,2,3,3)  which have the values 
from Table 2 of 13,774 and 5,021.6 respectively. The normal form of  λ(1,2,2,2)  =  
 3 σ(1,2) σ(2,2) =(3)(62.8) (81.2) = 15,298; therefore, FF4= 13,774 / 15,298 = 0.90.  
The normal form of  λ(1,2,3,3)  =  σ(1,2) σ(3,3)  + 2 σ(1,3) σ(2,3)  = (62.8) (74.34) = 
4668.6 Therefore FF5 = 5,021.6 / 4,668.6 = 1.08. This same 4th moment is also in (13). 
 
Closing the SDE equation set for chaos requires two phases. In the 1st phase, a single 
damping term is used for those equations in which 3rd moments go to zero from the 
physics. This is required, though the physics drives these to zero, because of the initial 
explosive randomness which affects all the moments. A trial damping term DK is 
increased until the values, X(1), X(2), X(6), X(8), X(10), X(11), etc. from Table 1, all 
approach 0.0 after a run of 4000 iterations.  The 4th moments  approaching zero are put 
in normal form and multiplied by FF = 1. During the integration through the initial 
randomness and chaos, these 4th moments may look chaotic before progressing to zero. 
 
Those non-zero 4th moments have been replaced with their calculated values by using the 
FF1 – FF5 factors appropriately multiplying their normal form – again achieving their  
calculated values. It is  important to leave the general [- σ(p,q) σ(k,l) ] terms in the 3rd 
moment equations [see beginning of Section 2] intact – avoiding  the error of  
incorporating these into the normal form of the 4th moments. These terms naturally arise 
from the SDE equation set and play an important feedback role in moment growth. 
 
The 2nd phase methodology described here is to “over stimulate” those non-zero 3rd 
moment predictive equations so that a damping term can be calculated and applied to 
those predictive equations. The FF1 – FF5 values are set to (1.2) [FF1 – FF5] – the 
value 1.2 is arbitrary. If this were not done, there could be no damping term applied -- 
the equations are already balanced with the LHS = 0 by just leaving the 4th moments as 
found from the MC results or the full SDE equations.  Only by creating an increased 
imbalance, can a positive damping term be calculated. There is no balance until far into 
the integration as the time derivatives evolve through their plus and minus changes – 
even quite large changes initially. The damping term for each of the four active 3rd 
moment equations is computed to again balance the equations -- and applied in a 
sequence to observe the subsequent changes in key variables. 
 
Tables 3 and 4 indicate changes in some of the key variables as the  damping coefficients 
change.  These values exactly match those values as seen Table 1.  The results for 
Table 3 are for FF =  (1.2)[FF1 – FF5] with the DK values optimized from the 1st phase 
with the initial values of FF1- FF5 = 6.0. The results for Table 4 are for FF = (1.4)[ FF1-
FF5] with the DK values optimized with the initial values of FF1-FF5 = 7.0. This 
optimization does include these equated to some arbitrary value – the same for each. 
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6.   Summary 
 
The real success of the closure is seen in the  Figures to follow. Figure 4. shows both 
MC and SD3 calculations over 4000 iterations with both achieving the final value of 
X(3) = 23.55. The initial randomness has been captured 
 
Figure 5. indicates both MC and SD3 calculations over 4000 iterations with both 
arriving the final value of  σ(3,3) = 74.34.  The excessive initial randomness has been 
handled quite well.  
 
Figure 6. reveals both MC and SD3 calculations over 4000 iterations with both having  
the final value of  T(3,3,3) = 132.4. The enormous explosive randomness has been 
treated perfectly. 
 
The methodology employed here to close this bound and dissipative system can be 
applied to all such systems cast in the stochastic dynamic format. It should be highlighted 
that the closure methodology expressed here is for nonlinear quadratic equations. The 
general moment prediction equations shown at the beginning of Section 2 can be cast in 
an abbreviated form for a single nonlinear quadratic term (and temporarily ignoring the 
dummy indices which provide the constant coefficients for each. Thus:  
 
   µi •  =  ( µp µq  + σpq )    
 
 σij

•   =  (µp σjq + µq σjp + Tjpq)  +  (µp σiq + µq σip + Tipq)  
                                                                                                                    
can be put in the following simplified form. Let any moment defined as f , we have  f2 = 
2nd moment about the mean (µ), f3 =3rd moment, … fn be the n-th moment about the 
mean. Then one has the simple form: 
µ ·  = µ µ + f2  
 
f2 ·  = 2 [ µ f2 + µ f2  + f3 ]  

 

fn ·  = n [ 2 µ fn  -  f2 fn-1 + fn+1 ] for n = 3,4,… 
 
Thus prediction of  a moment n involves a moment of n+1. Were the original 
deterministic equation nonlinear cubic X·  = X X X, the general form for the predicted 
moments would be the more complex: 
 
fn ·  = n [ 3 µ fn+1  + 3 µ2 fn - 3 µ f2 fn-1  - f3 fn-1 + fn+2 ]  
 
Predicting a moment n involves a moment n+2. A greater challenge, but in principle, 
the same logic would yield a solution. 
 
The use of both MC and SDE approaches together was shown to be quite advantages 
in Fleming (2014) and in this study of the closure of the SDE set. 
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Tables 
 
   

 
Moment 

 
Var # 

 MC 
Value 
 

 SD3 
Value 

 
Moment 

 
 Var # 

  MC  
Value 
 

  SD3 
Value 
 

 
  µ(1) 
 

 
 X(1) 

 
 -.001 
 

 
 .000 

 
T(1,1,1) 

 
 X(10) 

 
 .060 

 
 .000 

 
  µ(2) 
 

 
 X(2) 

 
 -.001 

 
 .000 

 
T(1,1,2) 

 
 X(11) 

 
 0.060 

 
 .000 

 
  µ(3) 
 

 
 X(13 

 
 23.55 

  
 23.55 

 
T(1,1,3) 

 
 X(12) 

 
 400.6 

 
 400.6 

 
 σ(1,1) 
 

 
 X(4) 

 
 62.8 

 
 62.8 

 
T(1,2,,2) 

 
 X(13) 

 
 .040 

 
 .000 

 
σ(1,2) 
 

 
 X(5) 

 
 62.8 

 
 62.8 

 
T(1,2,3) 

 
 X(14) 

 
 198.2 

 
 198.2 

 
 σ(1,3) 
 

 
 X(6) 

 
 -.005 

 
 -.000 

 
T(1,3,3) 

 
 X(15) 

 
 -.080 

 
 -.000 

 
 σ(2,2) 
 

 
 X(7) 
 

 
 81.20 

 
 81.20 

 
T(2,2,2) 

 
 X(16) 

 
 .009 

 
 .000 

 
σ(2,3) 
 

 
 X(8) 

 
 .001 
 

 
 -.000 

 
T(2,2,3) 

 
 X(17) 

 
 84.83 

 
 84.83 

 
σ(3,3) 
 

 
 X(9) 

 
 74.34 

 
 74.34 

 
T(2,3,3) 

 
 X(18) 

 
 -.060 

 
 -.000 
 

 
 
  

    
T(3,3,3) 

 
 X(19) 

 
 132.4 

 
 132.4 

 
Table 1.  Calculated MC values and computed SD3 values from full  
                 equations for R = 28 
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Moment 

 
Var # 

 MC 
Value 
 

 SD3 
Value 

 
Moment 

 
 Var # 

  MC  
Value 
 

  SD3 
Value 
 

 
λ(1,1,1,1) 
 

 
X(20) 

 
9060.1 

 
9060.1 

 
λ(1,2,2,3) 
 

 
X(27) 

 
 -.15 

 
 0.0 

 
λ(1,1,1,2) 
 

 
X(21) 

 
9060.2 

 
9060.1 

 
λ(1,2,3,3) 
 

 
X(28) 

 
5021.5 

 
5021.6 

 
λ(1,1,1,3) 
 

 
X(22) 

 
 -.14 

 
 0.0 

 
λ(1,3,3,3) 
 

 
X(29) 

 
 -1.2 

 
 0.0 

 
λ(1,1,2,2) 
 

 
X(23) 

 
10735 
 

 
10735 

 
λ(2,2,2,2) 
 

 
X(30) 

  

 
λ(1,1,2,3) 
 

 
X(24) 

 
-.003 

 
 0.0 

 
λ(2,2,2,3) 
 

 
X(31) 

  

 
λ(1,1,3,3) 
 

 
X(25) 

 
6712.5 

 
6713.0 

 
λ(2,2,3,3) 
 

 
X(32) 

  

 
λ(1,2,2,2) 
 

 
X(26) 

 
13774 

 
13774 

 
λ(2,3,3,3) 
 

 
X(33) 

  

 
  

    
λ(3,3,3,3) 
 

 
X(34) 

  

 
Table 2.  Calculated MC values and computed SD3 values for R = 28.     
                 X(20) and X(30) through X(34) are not in the SD3 equation set 
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Phase 
 

 
DK     

 
DK1 

 
DK2 

 
DK3 

 
DK4  

 
X(1) 

 
X(12) 

 
X(14) 

 
X(17) 

 
X(19) 

 
  
 

 
 

 For 
X12 

For 
X14 
 

For 
X17 

For 
X19 

 
 

 
 

 
 

 
 

 

 
 1.1 
 

 
5.5 

 
6.0 

 
6.0 

 
6.0 

 
6.0 

 
-3.1 

 
250.6 

 
138.4 

 
144.0 

 
294.3 

 
 1.2 
 

 
16.8 

 
6.0 

 
6.0 

 
6.0 

 
6.0 

 
0.0 

 
379.0 

 
193.1 

 
111.7 

 
284.9 

 
 2.1 
 

 
16.8 

 
4.52 

 
6.0 

 
6.0 

 
6.0 

 
0.0 

 
400.1 

 
196.9 

 
114.8 

 
289.2 

 
 2.2 
 

 
16.8 

 
4.52 

 
4.06 

 
6.0 

 
6.0 

 
0.0 

 
401.3 

 
200.2 

 
96.37 

 
293.3 

 
 2.3 
 

 
16.8 

 
4.52 

 
4.06 

 
8.80 

 
6.0 

 
0.0 

 
400.6 

 
198.2 

 
84.83 

 
290.9 

 
 2.4 
 

 
16.8 

 
4.52 

 
4.06 
 

 
8.08 

 
22.8 

 
0.0 

 
400.6 

 
198.2 

 
84.83 

 
132.4 

 
Table 3.  Closure with FF = 1.2 FF. Values of damping coefficients at each stage of 
                closure (using values of X(1), X(12), X(14), X(17) and X(19) as examples at 
                4000 iterations).  Optimal values are shown in color red. 
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Phase 
 

 
DK     

 
DK1 

 
DK2 

 
DK3 

 
DK4  

 
X(1) 

 
X(12) 

 
X(14) 

 
X(17) 

 
X(19) 

 
  
 

 
 

 For 
X12 

For 
X14 
 

For 
X17 

For 
X19 

 
 

 
 

 
 

 
 

 

 
 1.1 
 

 
5.5 

 
7.0 

 
7.0 

 
7.0 

 
7.0 

 
-4.5 

 
202.2 

 
 95.1 

 
140.9 

 
332.3 

 
 1.2 
 

 
22.2 

 
7.0 

 
7.0 

 
7.0 

 
7.0 

 
0.0 

 
430.0 

 
210.3 

 
121.0 

 
495.6 

 
 2.1 
 

 
22.2 

 
9.05 

 
7.0 

 
7.0 

 
7.0 

 
0.0 

 
402.3 

 
205.4 

 
115.6 

 
486.9 

 
 2.2 
 

 
22.2 

 
9.05 

 
8.16 

 
7.0 

 
7.0 

 
0.0 

 
401.9 

 
203.8 

 
126.2 

 
483.6 

 
 2.3 
 

 
22.2 

 
9.05 

 
8.16 

 
17.6 

 
7.0 

 
0.0 

 
400.6 

 
198.2 

 
84.83 

 
472.4 

 
 2.4 
 

 
22.2 

 
9.05 

 
8.16 
 

 
17.6 

 
45.5 

 
0.0 

 
400.6 

 
198.2 

 
84.83 

 
132.4 

 
Table 4.  Closure with FF = 1.4*FF. Values of damping coefficients at each stage of 
                closure (using values of X(1), X(12), X(14), X(17) and X(19) as examples at 
                4000 iterations).  Optimal values are shown in color red. 
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Figures 
 

 

 
 
       Figure 1.  R = 14 in Lorenz: [X1, X2, X3] = [0, 1, 0], initial variance 
                       X1 to X3 = 0.1, sample size = 40,000. After initial 
                       wandering X3 = R-1 = 13, and X1 = X2= -2.52 
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 Figure 2. σ(2,2) = X(7) versus time. MC and SD3 agree on both initial 
                 “explosive randomness”  and final value 
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Figure 3. Deterministic solution [0,1,0]  R = 28.  A formidable challenge! 
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Figure 4. X(3) as a function of time: MC and SD3 in excellent agreement 
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Figure 5. MC and SD3 calculations achieve  correct σ(3,3) =  74.3; the        
                 initial randomness is handled quite well  
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Figure 6. MC and SD3 reach correct value of T(3,3,3) of 132.4; the                                                              

           initial randomness is handled extremely well 
 
 
 
 

 


