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1. INTRODUCTION 

National Weather Service (NWS) forecasters 

currently utilize the WSR-88D network during warning 

operations. However, with the WSR-88D nearing the 

end of its projected 20-year lifecycle, Phased Array 

Radar (PAR) is being considered as a potential future 

replacement technology (Zrnić et al. 2007). With 

electronic beam steering capabilities, the PAR is 

capable of obtaining volumetric updates in less than 

1-min (Heinselman and Torres 2011). This is 

considerably faster than the current volumetric 

updates provided every 4-6 min by the WSR-88D, 

and may prove beneficial to forecasters who struggle 

to observe rapidly evolving weather (LaDue et al. 

2010).  

The Phased Array Radar Innovative Sensing 

Experiment (PARISE) addresses the question of the 

potential impacts of rapid radar data on the warning 

decision process of NWS forecasters. Two earlier 

PARISEs took place in 2010 and 2012 (Heinselman 

et al. 2012; Heinselman et al. 2013) and explored the 

use of PAR data during low-end EF0 and EF1 

tornado events. Both experiments reported promising 

results, with a key finding being improved tornado 

lead time during the use of rapid radar data in 

simulated real time. 

A common question, however, has been whether the 

benefits of rapid radar data observed during tornadic 

events are also apparent during other types of severe 

weather. To expand on the previous work of PARISE, 

the 2013 experiment switched the focus to investigate 

the impact of higher-temporal resolution radar data 

during severe hail and wind events.  

2. METHODOLOGY 

2.1 Experimental Design 

PARISE 2013 recruited a total of twelve NWS 

forecasters from 2 WFOs situated in the official  
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southern and eastern NWS regions. The experiment 

took place over six weeks during the summer of 

2013, with one participant from both offices visiting 

each week. The experiment followed a two-

independent group design incorporating matched 

random assignment. The independent variable was 

volumetric update time, with the control group 

receiving temporally degraded PAR data simulating 

5–min updates, and the experiment group receiving 

full-PAR data with 1–min updates. The participants’ 

responses to a pre-experiment survey allowed 

matching the groups on several important individual 

difference variables (i.e., experience and knowledge) 

via a matched random assignment procedure. 

2.2 Case Studies 

Although participants worked three cases during 

PARISE 2013, the results presented in this paper 

focus on data collected from the first two. Case 

selection was based on criteria that required sufficient 

longevity, continuity, and coverage of storms 

collected by the PAR. Case 1 presented a marginally 

severe hail event that took place on 20 April 2010. 

Case 2 presented a downburst event that occurred on 

16 July 2009 and produced both severe hail and 

wind. Case duration was 35-min and 44-min, 

respectively. Storm reports were obtained from the 

official NWS verification database, Storm Data 

(https://verification.nws.noaa.gov/).  

 Time Period 

(UTC) 

Number 

of 

Elevations 

Vertical 

Range 

Coverage 

20 April 

2012 

 

0134 – 0210 

 

19 

 

0.51° – 52.90° 

16 July 

2009 

 

2050 – 2053 

 

14 

 

0.51° – 15.50° 

 

2054 – 2138 

 

14 

 

0.51° – 38.80° 

 
Table 1. Scanning strategy characteristics. 

 

The scanning strategies used during cases 1 and 2 

are described in Table 1. For case 1, the PAR 

collected data using an enhanced volume coverage 

pattern (VCP) 12 strategy comprised of 19 elevation 

angles ranging from 0.51° to 52.90°. Case 2 used two 
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VCP strategies to collect data. The first three volume 

scans (2050–2052 UTC) comprised 14 elevation 

angles ranging from 0.51° and 15.50°. With the 

storms approaching the PAR, the vertical coverage of 

the VCP increased at the expense of low-level dense 

sampling. From 2053 UTC through the end of the 

case, the PAR scanned 14 elevation angles ranging 

between 0.51° and 38.80°.  

2.3 Working the Cases 

Prior to working the case studies, Darrel Kingfield led 

a 30–min session for familiarization of the Advanced 

Weather Interactive Processing System-2 (AWIPS-2). 

Currently, WFOs across the U.S. use AWIPS-1 to 

synthesize weather data, provide forecasts, and issue 

warnings in an efficient manner. AWIPS-2 is planned 

to replace AWIPS-1 in the near future, and though it 

will offer some new functionalities, the base features 

of AWIPS-1 will still be available. Throughout the 

experiment, AWIPS-2 was utilized to play back cases 

in displaced real time, where participants were 

provided base velocity, reflectivity, and spectrum 

width products. While familiarizing themselves with 

AWIPS-2, participants practiced navigating the 

system and loading available products, as well as 

issuing warnings using the operational NWS warning 

tool Warning Generation (WarnGen). Personal 

procedures were loaded to the designated computers 

of each participant to further enhance familiarity 

within their work environment. Participants did not 

move on to the case study phase until they were 

comfortable using AWIPS-2, though this typically did 

not take very long. A benefit of participants being at 

ease with using AWIPS-2 as their primary forecasting 

tool is the minimization of software distraction, 

allowing for their time and effort to be focused on the 

job at hand. 

Following the AWIPS training session, participants 

were assigned to separate rooms and were 

accompanied by one researcher. Each case was 

worked in simulated real time, where participants 

were asked to perform their forecast roles as they 

would under normal warning operations. Similar to 

PARISE 2012, participants watched a video briefing 

prior to working each case. Provided by Jim Ladue of 

the Weather Decision Training Branch (WDTB), 

briefings presented meteorological information that 

enabled participants to form expectations and 

familiarize themselves with the environment that they 

would be working with.  

2.4 Case Walk–Through  

Assessing the impacts of higher-temporal resolution 

radar data on the warning decision process can be 

accomplished using quantitative methods (e.g. lead 

time and verification statistics), but these results 

alone don’t tell the story behind why we observe what 

we do. Gaining insight into the why and how of 

decisions requires the use of qualitative data 

techniques specifically designed to probe cognitive 

activity (e.g., subjective evaluations). PARISE 2013 

dedicated a portion of the experiment to collecting 

this information. 

Ultimately, information regarding the goals, 

knowledge, and thoughts of a participant whom was 

engaged in the cases presented during PARISE 2013 

was sought through a cognitive task analysis (CTA) 

approach. Protocols for CTA (Hoffman 2005) 

provides a template as guidance to CTA 

methodology, which was appropriately modified to 

meet the goals and questions of PARISE 2013. 

Hoffman (2005) describes a sequence of three 

sweeps that the participant and researcher work 

through together. The first sweep asks participants to 

walk through the recent task, recalling what they did 

step-by-step while reviewing a playback video of their 

on-screen activity during the case. Sweep two 

involves a revision of the timeline. The purpose of this 

sweep is to provide the participant with an opportunity 

to correct or add information. During the third and 

final sweep, the researcher plays a more active role 

in eliciting information from the subject. This sweep is 

referred to as “deepening” and utilizes a set of 

probing questions to target research goals and 

questions. 

4. VERIFICATION 

4.1 Compound Warning Decision Model 

While observing participants, it quickly became 

apparent that the warning decision process was not a 

one-step procedure but was rather a compound 

decision. Comprised of multiple elements, the 

compound warning decision model describes three 

important parts: detection, identification, and re-

identification. First, participants will detect the 

potential of severe weather in some region of the 

area they are monitoring. Upon this decision, the 

WarnGen software and an appropriate warning is 

prepared. At this time, participants identify the 

weather threats that are associated with the region 

that is being warned. For example, a severe 

thunderstorm warning (SVR) requires the 

identification of hail and/or wind. Once the threat 
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expectation has been chosen, participants issue the 

warning. Through reassessment of prior radar data 

and interrogation of new incoming radar data, 

participants are able to track the evolution of a storm 

and re-identify the weather threat. Re-identification 

may involve the maintenance of a threat, a change in 

magnitude of threat, or a change in threat type 

expected. Through the issuance of a severe weather 

statement (SVS), participants are able to 

communicate updated information to the public. 

4.2 POD and FAR Scores 

The probability of detection (POD) and false alarm 

ratio (FAR) scores were calculated for all three levels 

of the compound warning decision model for all 

warning decisions made during cases 1 and 2. For 

detection, verification was based on whether a severe 

event occurred within a warning both spatially and 

temporally. Severe events that were not included in 

warnings were considered a miss. For identification 

and re-identification, individual weather threats (e.g. 

hail and wind for a SVR warning) were verified and 

then combined to compute overall POD and FAR 

scores. 

To obtain a group comparison, the mean POD and 

FAR scores were calculated for both control and 

experiment groups by averaging the scores of 

participants in the same group. The results show that, 

in both cases 1 and 2, the experiment group achieved 

superior POD and FAR scores to the control group for 

all three levels of the compound warning decision 

model with the exception of two instances (Table 2). 

These instances include 1) equal POD scores for 

identification in case 2 and 2) a lower re-identification 

POD score for the experiment group. 

4.3 LEAD TIME 

Storm reports were treated as instantaneous events. 

Lead time was calculated as the event time minus the 

time of the warning issued. A lead time of zero was 

assigned to events that were either not warned on or 

warned on after the event occurred. Case 1 included 

one event, and case 2 included three events. To 

compare between groups, the mean lead time was 

calculated as the average lead time across all 

participants within the same group. 

Individual lead time results (Figs. 1 and 2) show a 

general shift towards longer lead times for 

participants within the experiment group. This is 

reflected in the group mean lead times, whereby the 

control group achieved a mean lead time of 16.4-min 

in both cases 1 and 2, and the experiment group 

achieved a mean lead time of 22.0-min in case 1 and 

21.8-min in case 2. Combining the lead time results 

from both cases, we find that the experiment group 

exceeded the mean lead time of the control group by 

5.5-min.   

 

 
Figure 1. Participant lead time in case 1. 

 

 
Figure 2. Participant lead time in case 2. 

 

 5. DECISION TYPES 

It is a common assumption that with more radar data, 

forecasters will be more confident and will therefore 

make better decisions. To investigate this, the 

relationship between confidence and correctness was 

assessed by employing the Confidence-Based 

Assessment (CBA) behavioral model (Adams and 



30th Conference on Environmental Information Processing Technologies 

4 
 

Ewen 2004). A professor of education, Dr. Bruno, 

developed this model to assess the types of decisions 

students were making during multiple choice tests 

with the goal of understanding the knowledge base 

behind their choices. By instructing students to assign 

a level of confidence to answers, the decision can be 

classified into one of four categories (Fig. 3).  

Uninformed decisions are both incorrect and made 

without confidence, whereby the decision maker is 

aware that they do not have a suitable knowledge 

base to make an informed decision. Doubtful 

decisions are correct decisions that are made 

hesitantly due to a lack in confidence. Misinformed 

decisions are perhaps the most risky decisions, 

whereby the decision maker is confident but incorrect 

in their knowledge. The best types of decisions are 

mastery decisions. Both confident and informed, 

these smart decisions are the most desirable.   

 
Figure 3. Decision type categories based on the 

relationship between confidence and correctness. 
Adapted from Adams and Ewen (2004). 

 

The key decisions in the experiment group (N=54) 

and control group (N=53) were assessed across both 

cases. Key decisions were defined as SVRs or SVSs, 

and were considered correct for hits/correct rejections 

of active/absent severe weather.  Participants 

assessed their confidence on a scale ranging from 

not sure (0%), to partially sure (50%), to sure (100%). 

Given participants tended to have different baselines 

for judging self-confidence, the results were 

normalized onto a scale of 1-7. A value of ≥ 5 was 

considered confident since this rating corresponded 

closer to sure than partially sure. Each key decision 

was assessed in terms of confidence and correctness 

and was classified accordingly. Overall, the 

experiment group made better decisions compared to 

the control group (Fig. 4), with more mastery 

decisions and consequently less doubtful, 

uninformed, and - most importantly - misinformed 

decisions being made. This finding demonstrates that 

in these cases, the use of rapid data did result in 

better decisions being made.  

6. Conclusions 

The 2013 experiment broadened the focus of 

PARISE by considering severe weather other than 

tornadoes. The use of higher-temporal resolution 

radar data was found to positively impact the warning 

decision process of NWS forecasters during severe 

hail and wind events. The compound warning 

decision process was used to assess verification on a 

more intricate scale. Group mean POD and FAR 

scores were superior for the experiment group in 

almost all instances of detection, identification, and 

re-identification. Lead time was also benefited, with 

the experiment group providing an additional mean 

lead time of 5.5-min compared to the control group. 

Furthermore, assessment of decision confidence and 

correctness found that rapid data led to better 

decision making. With more mastery decision, the 

experiment group made less undesirable decisions 

than the control group.  

There are still plenty of questions that remain and will 

form a basis for future research. In particular, 

investigating whether there is an ideal update time is 

important since participants have only been exposed 

to either 1-min or the traditional 4–6-min volumetric 

updates during PARISE. Indeed, it may be that there 

is not one ideal temporal resolution if forecasters 

respond differently to rapid data. A within subjects 

comparison would also be useful for eliminating 

individual differences that are difficult to control for. 

Additionally, from a quantitative aspect, a larger 

sample needs to be obtained for assessment of 

statistical significance.  
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  Case 1  Case 2  
 

   Mean 
Control 

Mean 
Experiment 

Mean 
Control 

Mean 
Experiment 
 

Detection POD 0.83 1.00 0.95 1.00 
 

  FAR 0.58 0.45 0.33 0.25 
 

Identification 
(Overall Threat) 

POD 0.83 1.00 0.88 0.88 

  FAR 0.79 0.70 0.36 0.22 
 

Re-Identification 
(Overall Threat) 

POD 0.60 0.83 1.00 0.90 

  FAR 0.87 0.70 0.23 0.19 
 

 
Table 2. Mean POD and FAR scores for control and experiment groups. Statistics are calculated for both 

cases for all three levels of the compound warning decision process. 
 
 

 
 

Figure 4. Decision types from both cases 1 and 2 for the control and experiment groups. Colors 
correspond to Fig. 3, such that orange, yellow, red, and green represent uninformed, doubt, misinformed, 

and mastery decisions, respectively.  
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