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1 Introduction
An atmospheric dispersion release event involving

the transport of airborne contaminants may originate
from a continuous or instantaneous source. An instan-
taneous, or puff, release of hazardous contaminants can
be accidentally or intentionally released into the atmo-
sphere where its transport by wind is subject to vari-
ous atmospheric conditions. Using a network of sen-
sors, one can estimate the parameters of the release
source using an appropriate forward model and the
measurements obtained from the sensors. In this study,
the Stochastic Event Reconstruction Tool (SERT) [1],
which was developed to work for continuous releases
where time of release was not a factor, is extended to
reconstruct instantaneous releases. This extension will
be referred to as the Puff Event Reconstruction Tool
(PERT) and will be the focus of this paper1. In previ-
ous work, SERT was also developed into a Multi-source
Event Reconstruction Tool (MERT) with a composite
model ranking formulation [2].

The goal of this research is to develop a quick and
efficient tool for characterizing a contaminant disper-
sion event once it has been detected by a sensor net-
work. For use in threat reduction and mitigation, it
is important for the software tool to run quickly and
provide a probabilistic search region. A probabilistic
search region may aid decision makers in their response
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strategies better than a deterministic single point esti-
mate. Previous research in the source term estimation
(STE) field has yielded methods that take deterministic
and probabilistic approaches. Some researchers, such
as [3–7], have used cost function minimization, adjoint
models, and other optimization techniques to solve STE
problems. Our STE method in [1,2], and the STE meth-
ods used by [8–10], use Bayesian inference as the core
component of the STE algorithm. A solution adopting
this probabilistic approach yields a probabilistic solu-
tion, which may be helpful for decision makers.

Using a data-driven Gaussian puff model, discussed
in the following section, we estimate the source loca-
tion, quantity of release, and time of release, along with
other model input parameters. We use a Bayesian infer-
ence method with Markov chain Monte Carlo (MCMC)
sampling to obtain parameter estimates probabilisti-
cally.

With the contaminant release time now being a fac-
tor in the instantaneous release case, the inverse prob-
lem introduces new challenges to the event reconstruc-
tion problem. Rather than a single, time-averaged set
of concentration data in the continuous case, we must
now take multiple time steps of data as input to the
event reconstruction tool. To address this new compli-
cation faithfully, we make modifications to the original
Bayesian inference method in SERT to ensure the con-
vergence of MCMC chains for puff releases.

To ensure a quick and accurate source term re-
construction, we pursue a parallel implementation in
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our method for MCMC chains, and determine the
convergence of the simulation using statistical post-
processing. Thanks to our parallel implementation, the
entire simulation takes approximately 5 to 7 minutes
using Intel E8400 3.0 GHz processors in a conven-
tional workstation. We validate our method using a real
trial scenario from the Fusion Field Trial 2007 (FFT07)
study [11], and demonstrate successful temporal and
spatial reconstruction with puff releases of passive con-
taminants.

2 Forward Model and Inference Engine Descrip-
tion
Since this research focuses on short range re-

leases, a Gaussian puff model is an applicable forward
model when flat terrain and steady wind conditions are
present. In certain cases, where the puff splits or there
are varying wind conditions, a different forward model
may be selected to account for these additional disper-
sion factors. The FFT-07 trials were conducted over
flat terrain, and certain trials were under approximately
steady wind conditions. The primary reasoning behind
the use of the Gaussian puff model is its low compu-
tational expense. Since our Bayesian inference method
relies on many millions of calls to the forward model,
the program may be executed on a conventional work-
station in only a couple of minutes due to the low com-
putational cost of our forward model. The formulation
of the Gaussian puff model [12] used in PERT is shown
in Eq. 1.
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It was shown in our previous work [1, 2] that for-
mulating the puff diffusion parameters,σx, σy, andσz,
in a data-driven manner improved the agreement of the
model with the observed concentration field. These dif-
fusion parameters were calculated according to the for-
mulas recommended in [13] for type-D neutral condi-
tions. We also assumed the equation for diffusion in
the downwind direction was the same as the crosswind
direction, while the coefficient differed. The stochas-
tic parametersζ1, ζ2, and ζ3 have taken the place of
the empirical coefficients in order to make the follow-
ing diffusion equations data-driven.σx, σy, andσz cor-
respond to the diffusion in thex, y, and z directions,

respectively.

σx = ζ1x(1+0.0001x)−1/2 (2)

σy = ζ2x(1+0.0001x)−1/2 (3)

σz = ζ3x(1+0.0015x)−1/2 (4)

To perform our event reconstruction, we first for-
mulate our problem as an inverse problem. An inverse
problem may be stated as Eq. 5, wherem is a set of
forward model parameters,d is a set of observed con-
centration data, andF is our data-driven Gaussian puff
forward model.

m ≈ F−1(d) (5)

The complete list of thek number of forward model
parameters for the case of a single instantaneous release
is shown in Eq. 6. Model parametersx andy are the co-
ordinates of the source location.θ is the wind direction
calculated as an angle from the positive x-direction of
the coordinate system.Q is the total amount of material
that was instantaneously released into the atmosphere.
As previously stated,ζ1, ζ2, andζ3, are the stochastic
coefficients used in the calculation of downwind puff
diffusion in thex, y, andz directions, respectively. Fi-
nally, ∆t is the time since the contaminant release.

m = [x,y,θ,Q,ζ1,ζ2,ζ3,∆t] (6)

The basis of the Bayesian formulation incorpo-
rated into our inference engine is Markov chain Monte
Carlo (MCMC) via the Metropolis-Hastings algorithm
[14]. The Bayesian inference engine used in SERT and
MERT is explained in sufficient detail in [1,2] and will
not be in this paper. A sample puff traveling through
the sensor domain is shown in Fig. 1.

3 Workflow and Data Stream
For a high-level view of the arrangement of pro-

cesses involved from start to finish, a workflow diagram
has been constructed and is shown in Fig. 2. Each com-
ponent of the workflow will be discussed in detail in the
following sections. First, concentrations are observed
by the sensors in the sensor network. This data is then
fed to the PERT pre-processor where it is processed and
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Fig. 2. Overall workflow diagram showing progression of processes and parallel data streams from input at sensor network to output of final

solution.

Fig. 1. Sample puff 80 s after release, traveling downwind across

sensor domain.

formatted for use by the program. Each time step of
data is then assigned to a different parallel task (i.e.,N
timesteps =N tasks). Multiple parallel MCMC chains
are launched for each task, and the inference engine op-
erates on each of these parallel chains. The task specific
chains are then post processed and sent to a host pro-
cess where all task results are combined and processed
further. Finally, the solution is returned based on the
specified number of time steps to be included in the re-
sult.

3.1 Pre-Processor

Once raw data has been collected by the sensor net-
work, it must be processed for input to PERT. The first
step is to scan all sensors in the sensor network and de-
termine which sensors were not operating correctly dur-
ing the period of interest. Using quality control flags
in the raw data, sensors were discarded if they were
flagged with errors for more than 50% of the run-time
for a specific trial.

The raw data was recorded at a frequency of 50 Hz
which provided a set of data every 20 ms. Due to the
formulation of the forward model, noise signals from
the 50 Hz data increased the difficulty of the reconstruc-
tion. The 50 Hz data is time averaged over 5 s intervals
to produce smoother data and reduce noise in the con-
centration field. Figure 3 shows the raw data from a
sensor over a 200 s span where the contaminant puff
enters and then exits the sensor field. This can be seen
with the rise and fall of concentration measurements at
the sensor. Figure 4 shows the same sensor after time-
averaging the data over 5 s intervals to smooth out the
noise. The sensor data is then formatted into data files
that will be used as input to PERT.
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Fig. 3. Raw concentration data from a single sensor in the sensor

network over a 200 s time span at 50 Hz.
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Fig. 4. Data from the same sensor in Fig. 3 time averaged over 5 s

intervals.

3.2 Parallel Inference Engine
Each time step of concentration data represents a

possible outcome from a forward model with the cor-
rect set of input parameters. Therefore, an event re-
construction can be performed for each time step, and,
ideally, each reconstruction would produce the same so-
lution. N parallel tasks are launched, representing the
N time steps of data available. Multiple reconstruc-
tions can also be performed on each task. This includes
launching subsequent parallel MCMC chains on each
parallel task. An advantage to having multiple MCMC
chains for each task is that we can estimate the conver-
gence of our probabilistic solution, which is discussed
in the next section.

In the current inference engine, five parallel
MCMC chains are launched for each task. Each of the
chains is started at a different random point within the
state-space and is allowed to run for a set number of

iterations. The parallel operations are carried out by
Message Passing Interface (MPI) processes. Each of
the chains completes 1 million iterations for each of the
k model parameters of interest. An in-depth discussion
of the Bayesian inference processes can be found in [1]
and [2].

3.3 Convergence of Parallel MCMC Chains
It is important to verify the convergence of our sim-

ulation so that we may infer the most probable forward
model parameters in our solution. Upon completion of
the MCMC runs, the first half of each chain is discarded
as a conservative burn-in time, and the variance for each
individual chain is determined. Those variances are
then averaged, and this quantity is referred to as theav-
erage within-chain variance, or σ2

w.c.ave. The chains are
then mixed together to create one larger chain, and its
variance is then determined. The variance of this mixed
chain is referred to as the mixture variance, orσ2

mix. As
stated in [15], the chains will have mixed upon conver-
gence, so the mixture variance should be the same as
the average within chain variance.

A value called the “potential scale reduction fac-
tor”, or R̂, was proposed in [16] and can be used to
describe the level of convergence. It is computed ac-
cording to Eq. 7. The value of̂R should be 1 for a
perfectly mixed solution, however [15] suggests that a
value less than 1.1 is acceptable in practice. It is impor-
tant to note that each stochastic parameter must con-
verge, and that checking the convergence of a single
variable does not describe the convergence of the com-
plete solution. We consider the solution as converged
once all variables achievêR ≤ 1.1.

R̂ =

√

σ2
mix

σ2
w.c.ave

(7)

The statistical software R [17] is used with the
coda package [18] to calculate the potential scale re-
duction factor during our task-level post processing
step. Using this package, we are also able to deter-
mine a sufficient number of iterations to reach con-
vergence. As described in [15], thegelman.plot
function in thecoda package produces a plot ofR̂ vs.
iteration every 50 iterations. This is a visual way to
check for false convergence and is quite helpful in de-
termining the correct number of iterations required for
a converged result. Figure 5 shows an example plot
of the potential scale reduction factor for they vari-
able. Thegelman.diag function calculateŝR with a
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Fig. 5. Potential scale reduction factor for y model parameter show-

ing estimated convergence over 1 million MCMC iterations.

97.5% quantile since the convergence is estimated due
to a finite chain length.

3.4 Final Post-Processing
The final step in the workflow is to combine the

task-level solutions into a composite solution. The pos-
terior probability densities from each task solution are
combined to create a single posterior probability den-
sity for each variable. To arrive at the most probable
solution, a histogram is created for each variable. The
histogram bin with the highest count is determined and
the midpoint of that bin is selected as the most prob-
able value for that variable. Since we are using bin
midpoints as the solutions, it is important to determine
the correct bin width for the histogram of each variable.
The optimal bin width,W , for an unbiased estimation
of the probability density has been formulated by [19]
and the calculation is shown in Eq. 8.

W = 3.49σN−1/3, (8)

whereσ is the sample standard deviation andN is the
number of samples.

4 Application to FFT-07 Data Set
In 2007, the United States Army Test and Evalua-

tion Command conducted the FUSION Field Trials of
2007 (FFT-07) [11]. Continuous and instantaneous re-
leases of a propylene gas tracer were measured by a
sensor network comprised of 100 sensors spaced 50 m

Fig. 6. Sensor layout for the FFT-07 data set [11] with the outer

white box representing the 1 km × 1 km test space.

apart in a 1 km× 1 km test space. The sensor arrange-
ment and test space was described in the FFT-07 re-
port [11], and is shown in Fig.6.

In section 3.4, we referred to the composite solution
created by combining the posterior probablity densities
from the reconstruction at each time step. Figures 7, 8,
9, and 10 show these composite results in a “windowed”
fashion, where each progression includes an additional
25% (30 s) of the available time step data. We view the
results in this manner so we can see how the solution is
affected as more data is included and how the solution
changes the longer the contaminant puff is traveling in
the sensor domain.

The darkest regions can be interpreted as the ar-
eas of highest probability. We note that throughout the
solution, the true source location, indicated by a Red
marker(×), is encompassed by a region of high proba-
bility. Using only the first 30 s of data, we see that the
region of highest probability is within 50 m of the true
source location. We also note in Fig. 7 that a bi-modal
posterior distribution has developed. Upon further ex-
ploration this was determined to be caused by the puff
splitting into two smaller puffs, each with its own cen-
tral point of high concentration. The puff later merges
back into one larger puff as it diffuses downwind and
the contribution of this merger is shown by the larger
single area of high probability produced in Fig. 10.
Due to the steady wind assumptions of the Gaussian
puff model, the longer the puff travels in the domain,
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Fig. 7. Composite posterior probability density for source location

using time 0 to 30 s.

Fig. 8. Composite posterior probability density for source location

using time 0 to 60 s.

unsteady conditions may cause the puff to deviate from
a constant line of travel. We attribute some of the spread
of the posterior distribution to the deviation of the wind
from steady conditions.

Figures 11, 12, 13, and 14 show the windowed re-
sults for the estimate of time since release, or∆t. A
value of zero corresponds to a correct estimate of the
time since release. We can see that within the first
minute of the plume entering the sensor domain, the
agreement of release time is favorable. Beyond the first
minute, however, we see that the results shift strongly
away from the correct result. We believe that this is due
to the same factor affecting the source location results,
the deviation of the actual puff from the forward model
formulation. From these results, it is clear that earlier
data is much more beneficial when using a model that
does not account for variations in wind conditions.

Fig. 9. Composite posterior probability density for source location

using time 0 to 90 s.

Fig. 10. Composite posterior probability density for source location

using time 0 to 120 s.
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Fig. 11. Composite posterior probability density for time since re-

lease, ∆t , using time 0 to 30 s.
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Fig. 15. Composite posterior probability density for contaminant release quantity, Q, in kilograms, using time 0 to 120 s.

−200 0 200 400 600 800 1000
0

1

2

3

4

5

6
x 10

4

time error (s)

co
un

t

Using first 50% of data

Fig. 12. Composite posterior probability density for time since re-

lease, ∆t , using time 0 to 60 s.

One of the final goals of the event reconstruction
was to determine the quantity of contaminant,Q, re-
leased into the atmosphere. Using the full two minutes
of time during which the puff was present in the sen-
sor domain, we estimated a release quantity of 0.9 kg.
The true release quantity for Trial 5 was 1.21 kg. The
posterior probability density forQ is shown in Fig. 15.
The slight underestimation, approximately 25% error,
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Fig. 13. Composite posterior probability density for time since re-

lease, ∆t , using time 0 to 90 s.

is possibly due to the smoothing of the concentration
measurements, which reduced the magnitudes of the
peak concentrations.

5 Conclusion
The Puff Event Reconstruction Tool (PERT) was

developed to reconstruct instantaneous contaminant re-
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Fig. 14. Composite posterior probability density for time since re-

lease, ∆t , using time 0 to 120 s.

leases. A trial from the FFT-07 data set has been re-
constructed to test the performance of PERT. Using a
workflow with multiple levels of parallelism, the tool
quickly estimates characteristics of the source term.
While there was some variation in the results due to
the puff splitting and unsteady winds, the tool provided
a probable estimate of source location approximately
100 m from the true source.

Using data collected soon after the release yielded
better results, both spatially and temporally, than the re-
sults produced using data from the latter half of the trial.
Overall, PERT was able to successfully characterize the
source term, especially the release quantity parameter,
which was very close to the true quantity. Windowed
results were used to view the various stages of the com-
posite solution. The windowed views showed how each
period of data contributed to the overall solution.

To account for cases where the puff splits or en-
counters unsteady winds, a more complex puff model
may be required to capture those elements of the con-
taminant dispersion. However, a more complex forward
model may come at an increased computational cost,
and therefore, an increased run time for PERT.
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