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Introduction 
"Using probability forecasts in decision making is what 
its all about, right?  Of course, Ed knew this . . ."  (Bob 
Glahn) 
 
 Why do we make weather forecasts?  Why 
do we engage in research aimed ultimately at 
improving those forecasts?  Because users of those 
forecasts need information about the future behavior 
of the atmosphere to improve their decision making.   
 Ultimately, the economic justification for both 
research and operations in the atmospheric sciences 
rests on the suitability and use of forecasts to support 
decision making by forecast users.  Probability 
forecasts impart more value than do their 
nonprobabilistic counterparts, and the probabilistic 
format is essential for separating the role of the 
forecaster from that of the decision makers who use 
the forecasts.  Both of these assertions can be 
demonstrated using quantitative decision-making 
models, which have roots in Bayesian statistics, and 
can be used to compute potential (assuming optimal 
use) economic value of forecasts in particular 
settings.   
 We use probability forecasts to quantify 
uncertainty about future atmospheric behavior.  
Uncertainty about future atmospheric behavior is 
fundamentally a consequence of "chaotic dynamics", 
or sensitivity to initial-condition uncertainty.  Our best 
practical approach to dealing with this initial-condition 
uncertainty in dynamical models of the atmosphere is 
presently through use of ensemble forecasting, where 
the dynamical model is integrated multiple times from 
initial conditions that are (ideally) independent random 
draws from the probability distribution characterizing 
the initial-condition uncertainty.  Although not strictly 
part of my remit in preparing this review, I recently re-
read Epstein's (1969a) famous paper on stochastic-
dynamic forecasting.  To my surprise I discovered that 
he appears to have been the inventor of ensemble 
forecasting!  In Section 4 of that paper he describes 
"Monte Carlo solutions," which he uses there only to 
provide verification data for his second-moment-
closure analytical calculations.  Yet the recipe he 
provides is essentially the method that is used 
operationally today:   
 
"Discrete initial points in phase space are chosen by a 
random process such that the likelihood of selecting 
any given point is proportional to the given initial 
probability density.  For each of these initial points 
(i.e. for each of the sample selected from the 
ensemble) deterministic trajectories in phase space 
are calculated by numerical integration . . .  Means 
and variances are determined, corresponding to 

specific times, by averaging the appropriate quantities 
over the sample."  (Epstein 1969a) 
 
 Ed Epstein clearly understood why 
uncertainty about the atmosphere will always be 
inescapable, the importance of using probabilities to 
quantitatively characterize that uncertainty, and the 
value to individuals and to society at large that would 
flow from their use.  He was instrumental in advancing 
these issues, and much of that work was carried 
forward and extended by his Ph.D. student, Allan 
Murphy.  As I was, in turn, Allan's student I am 
pleased to have been invited to review this portion of 
Ed's work.  Epstein's contributions to probability 
forecasting and decision making also have close 
connections with other aspects of his work, notably 
stochastic-dynamic forecasting, but especially 
Bayesian statistics and forecast verification.  I will also 
take note of these connections.   
 
 
Probability Forecasts 
 "[P]robability statements are more useful than the 
conventional forecast to a broad segment of the users 
of the forecasts.  The evidence for this is so clear that 
the wide use of probability statements would have 
occurred much sooner, were it not for uncertainties 
regarding the use and interpretation of these 
statements on the part of the public and especially on 
the part of the meteorologists who must issue them."   
 (Epstein 1966b) 
 
 Although probabilistic weather forecasting in 
some form dates from perhaps the late eighteenth 
century (Murphy 1998), the first description of 
recognizably modern probabilistic forecasts, explicitly 
associating a numerical probability with occurrence of 
a clearly defined future event, may have been by 
Hallenbeck (1920).  Experimental subjective 
precipitation probability forecasts for selected 
locations in the U.S. were initiated in the mid-1950's 
by the Travelers Weather Service (a private weather 
forecasting service) (Murphy and Winkler 1984), and 
by the U.S. Weather Bureau (predecessor to the 
current National Weather Service) (Root 1962).  
These probability-of-precipitation (PoP) forecasts 
became official, nationwide operational Weather 
Bureau forecast products in 1965 (Murphy 1998, 
Murphy and Winkler 1984).   
 The meaning of these new PoP forecasts 
was, and continues to be, the probability that at least 
0.01" of (liquid-equivalent, in the case of frozen) 
precipitation occurs at a specific measurement 
location during the forecast valid period.  Literature 
from that time (e.g., Epstein 1966a; Murphy and 



	
   2 

Winkler 1971a,b; Murphy and Winkler 1974; Murphy 
et al. 1980; Rogell 1972, Scoggins and Vaughan 
1971), and even from the present day (e.g., Williams 
et al. 2014) reveals some confusion and 
misunderstanding about the meaning of PoP 
forecasts on the part of not only the general public, 
but also among forecasters and statistically literate 
individuals as well.  Epstein produced three papers 
that addressed these problems concerning 
interpretation, interpretability, and public acceptance 
of probability forecasts.   

 
 
 Even though format of the new PoPs were 
specifically for point locations, one aspect of the 
confusion about their meaning was whether they 
pertained instead to occurrences over larger areas, 
and the nature of the relationship of the point and 
areal probabilities.  In the paper "Point and Area 
Precipitation Probabilities" (Epstein 1966a), Epstein 
analyzed an idealized model of random, circular 
rainfall areas in relation to a circular forecast area 
(Figure 1).  In this model there are N precipitation 
cells per unit area, each having area Q, distributed 
over an area that is large compared to the unit 
forecast area.  Using a Poisson distribution for the 
number of cells overlapping a particular point location 
within the forecast area, Epstein derived the 
relationship between the point probability Pp and the 
area probability Pa,  

€ 

1− Pa = (1− Pp )
[1+ 1/Q )]2

,   (1) 
so that the point and area probabilities are nearly 
equal for large (synoptic-scale) rain areas Q, but the 
point probability is much smaller than the area 
probability for small (convective-scale) rain areas.  As 
an aid to forecasters, who might be able to estimate 
the average m of a probability distribution for the 
number of precipitation cells per unit area, he then 

derived the expected values of the point and area 
probabilities, assuming known rain cell size and 
exponential probability distribution for the numbers of 
cells, 

€ 

E[Pp ] = (1− e−NQ )(1/µ)e−N / µdN
0

∞

∫
         =Qµ /(Qµ +1)    (2a) 
and 

€ 

E[Pa ] = (1− e−N [1+ Q ]2

)(1/µ)e−N / µdN
0

∞

∫
         = [1+ Q]2 µ /([1+ Q]2 µ +1)   . (2b) 
He also obtained somewhat more general 
expressions, assuming gamma distributions for the 
density of rain cells.  
 Reacting to logical inconsistencies in a 
worded forecast that included a precipitation 
probability statement, Curtiss (1968) proposed that 
precipitation probabilities should be formulated and 
interpreted in terms of expected areal coverage.  In a 
formal response, Epstein (1968) concluded that point 
probabilities are better suited to user needs, that 
specifically forecasting areal coverage would not 
enhance the information content of the forecasts if it is 
implicit that the forecast probability applies uniformly 
throughout a forecast area of interest, and that 
explaining the meaning of expected areal coverage to 
the general public would introduce unnecessary 
complications.   
 Curtiss (1968) also questioned whether "the 
precipitation 'probabilities' which are being released to 
the public [are] really interpretable as action 
probabilities in day-to-day decision making . . .?".  
This question goes directly to the practical usefulness 
of probability forecasts, and therefore to the very 
rationale for forecasting in the first place.  As noted in 
Epstein's other 1966 paper, "Quality Control of 
Probability Forecasts" (Epstein 1966b), whether 
forecast probabilities are "actionable" is equivalent to 
the question of whether, after transformation to 
betting odds, the uncertainty information in the 
forecast represents a fair bet.  For example, if a 
forecaster believes the probability of precipitation 
tomorrow is 1/3, would that forecaster be equally 
comfortable taking either side of a low-stakes 2:1 
odds bet against?  Readers who may be 
uncomfortable about conceptually mapping their day-
to-day decisions in terms of betting odds should 
realize that most decisions that are not trivially easy 
require that uncertainty in the outcome must be 
confronted, so that in effect there are many such 
"bets" in life.   
 In this "Quality Control" paper, Epstein 
(1966b) addresses the issue of quantitative 
interpretation of the new subjective probability 
forecasts, both on the part of the forecasters who 
would be recalibrating their judgment processes in 
light of forecast verification data (the "quality control" 
referred to in the title of the paper), and on the part of 
forecast users interested in the reliability of the 
forecasts (i.e., how literally the subjective forecast 
probabilities could be believed).  He makes the 
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statement that begins this section by way of 
motivating the analysis of these problems. 
  To address these problems, Epstein took an 
explicitly Bayesian view of probability, as a quantified 
degree of belief rather than as an expression of long-
run relative frequency.  Here he represents the 
forecaster's or forecast user's uncertainty about the 
(precipitation occurrence) event (equivalently, what 
would be fair betting odds), which he called p, given 
the forecaster's stated probability, which he called ρ, 
using standard beta distributions.  Standard beta 
distributions have support on the unit interval, and are 
conventionally expressed in terms of the two 
distribution parameters α and β as  

€ 

f (p) =
Γ(α + β)
Γ(α)Γ(β)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ pα−1(1− p)β −1

   .  (3) 
However, Epstein (1966b) reparameterized the 
standard beta distribution, assuming that the 
subjective probability forecasts were unbiased so that 
the distribution is defined by its mean α/(α+β) = ρ, and 
a parameter L indicating confidence in the stated 
probability, yielding the conditional beta probability 
density  

€ 

f (p | ρ) =
Γ(L)

Γ(Lρ)Γ(L − Lρ)
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
pLρ−1(1− p)L(1−ρ )−1

.  (4) 
 Figure 2, taken from Epstein (1966b), shows 
some examples of these distributions.  Larger values 
of the confidence parameter L yield distributions that 
are more concentrated, since the variances of these 
distributions are ρ(1–ρ)/(L+1).  Some perspective on 
the caution with which the new PoP forecasts were 
regarded can be had from Epstein's observation that 
his own prior (i.e., without having seen any verification 
data for the PoP forecasts) distributions "seem to 
correspond best to L = 10."  So, for example, at the 
time and without the benefit of verification data, 
Epstein suggest that his interpretation a PoP forecast 
of ρ = 0.5 was near certainty with respect to outcome 
probability larger than 0.05 and smaller than 0.95, but 
with nontrivial probabilities anywhere in the range 
from 0.2 to 0.8! 
 The device of reparameterizing the beta 
distribution using the confidence parameter L is 
convenient within the context of Bayesian updating for 
a Bernoulli probability (e.g., Epstein 1985), in light of 
new information.  In the present setting of 
recalibrating PoP forecasts, the dichotomous 
Bernoulli event is occurrence of at least 0.01" of 
precipitation in a forecast valid period, and the new 
information consists of verification data for L 
occasions on which the PoP forecast ρ had been 
issued.  In addition to their capacity to represent a 
wide variety of functional forms, beta distributions are 
convenient in this context because they are conjugate 
to the Bernoulli likelihood, meaning that a beta 
posterior distribution results when updating a beta 
prior distribution.   
 Consider, then, prior distributions in the form 
of Equation 4, with parameters L and ρ, to will be  

 
 
updated after seeing verifications for n forecasts 
where PoP = ρ, and in which precipitation occurred r 
times.  The result is another beta distribution, with 
conditional mean  

€ 

µ = (Lρ + r )/(L + n)      (5) 
and conditional variance 

€ 

σ2 =
[Lρ + r ][L(1 − ρ ) + n − r ]

(L + n)(L + n +1)
  .  (6) 

To pursue the example of Epstein's hypothetical mid-
1960's prior distribution for p, given a forecast ρ = 0.5 
and a confidence factor L = 10, if the results of n = 10 
forecasts of ρ = 0.5 identify r = 5 instances of 
precipitation, the posterior mean µ is unchanged, but 
the posterior variance decreases from 0.0227 to σ2 = 
0.0119, which is the same distribution associated in 
Figure 2 with L = 20 and ρ = 0.5.   
 When large samples of forecast verification 
data are available, the posterior mean in Equation 5 
converges to the empirical relative frequency, r/n, and 
the variance approaches (r/n)(1–r/n)/n, regardless of 
the parameters of the prior beta distribution.  As a 
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practical matter, very large verification data samples 
are available for nationally aggregated probability 
forecasts.  For example Murphy (1985) shows sample 
sizes of n ≈12,000 for a half-year of PoP forecasts 
across the U.S. in 1980, yielding standard deviations 
around 0.025 for the posterior distributions of ρ.  The 
implication is that probability forecasts can be taken at 
face value for quantitative decision making given the 
large available verification data samples, when they 
indicate ρ ≈ r/n to good approximation for each 
possible probability forecast value ρ.   
 
 
Decision Models: Overview 
"Weather forecasts possess no intrinsic value in an 
economic sense.  They acquire value by influencing 
the behaviour of individuals and organisations . . . 
whose activities are sensitive to weather conditions."  
(Murphy 1994) 
 
 I opened this paper with Bob Glahn's 
observation regarding the importance of, and 
connection between, probability forecasting and 
decision making.  Having reviewed some of Ed 
Epstein's contributions to probability forecasting I will 
now move on to talk about the potential for their use 
in decision making.  As meteorologists we tend to 
assume that our forecasts have value but as the 
quote from Murphy points out, any value economic 
must be mediated by the use to which they are put.   
 The analytical framework of decision 
analysis (e.g., Berger 1980, Clemen 1991, Winkler 
1972) is a convenient and powerful approach to 
linking forecasts and their optimal use, and in the 
process to compute rational estimates of the 
economic value of forecasts.  It also allows 
quantitative estimation of the expected economic 
value of potential future forecasts based on assumed 
improvements in accuracy.  This framework, which 
has roots in Bayesian statistics, was apparently first 
introduced to the meteorological literature by 
Epstein's (1962) paper, "A Bayesian Approach to 
Decision Making in Applied Meteorology."  Much of 
that paper is devoted to Bayesian calibration of 
forecasts given limited verification data, but since 
operational probability forecasts have demonstrated 
excellent calibration over the course of many years 
(e.g., Murphy 1985), in light of the results in Equations 
(5) and (6) I will assume in the following that available 
probability forecasts are well calibrated as issued and 
can be taken at face value.   
 Decision analyses are "prescriptive" in that 
they specify in advance what optimal decisions will be 
given particular forecasts and user contexts, rather 
than describing how decision makers actually use 
forecasts.  In particular they assume rationality on the 
part of the decision maker, in the sense that optimal 
decisions will be those that maximize the statistical 
expectation of a relevant objective function.  The 
basic structure of the analysis rests on the following 
elements: 
 

1. Available Actions.  The modeled decision maker 
must have at least two alternative actions to choose 
among:  ai, i = 1, . . . , I.  These are enumerated fully 
and explicitly.   
 
2. Events, or "states of nature."  Here these will be 
specific meteorological events xj, j = 1, . . ., J; of which 
there must again be at least two in order for the 
analysis to be meaningful. 
 
3. Probabilities for the events.  Here these are derived 
from the forecasts fk, k = 1, . . ., K; whose calibration 
yields the conditional event probabilities p(xj|fk).  In the 
case of operational PoP forecasts, which are well-
calibrated probability forecasts, p(xj|fk) = fk (i.e., they 
"mean what they say") to good approximation.  In the 
more general setting these conditional probabilities 
are Bayesian posterior probabilities.   
 
4.  Outcomes.  Each possible combination of an 
action and an event leads to a specific quantified 
outcome, O(ai, xj), and in order for the decision 
analysis to be meaningful there must be a preference 
order among these outcomes.  Often, and most 
straightforwardly, the outcomes will be expressed in 
monetary terms.  More generally the outcomes are 
expressed in units of "utility", which can represent the 
risk attitude of a decision maker with respect to 
possible outcomes.  For example, if you would prefer 
receiving $1000 for sure rather than the prospect of 
$2000 on the flip of a coin, your utility for the $1000 is 
more than half your utility for $2000, U($1000) > 
U($2000)/2, and your utility function for money is said 
to be nonlinear.  Expressing the outcomes in simple 
monetary terms is the special case of linear utility.  
Figure 3 schematically compares nonlinear (risk 
averse and risk seeking) and linear (risk-neutral) utility 
functions for money.   
 

Money

U
til

ity

Risk averse

Risk neutral

Risk seeking

 
Figure 3.  Example utility functions for money, illustrating 
characteristic shapes for risk-averse, risk-neutral, and risk-
seeking decision makers.   
 
 The most straightforward application of 
decision analysis involves so-called "static" decisions, 
which are either one-off situations, or at least 
decisions that are independent of the results of other 
decisions.  The objective function to be maximized in 
the decision making is the expected (probability-
weighted average) outcome, 
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€ 

O* ( fk ) =max
i

O(ai,x j )p(x j | fk )
j=1

J

∑
  .  (7) 

That is, there is an optimal action ai* associated with 
each of the K possible forecasts.  If the forecasts can 
make a difference to the decision maker, some of 
these optimal actions, associated with different 
forecasts, will be different from each other.  Otherwise 
the forecasts will not have economic value, as 
indicated by the quote from Murphy at the beginning 
of this section.   
 The statistically expected (or, equivalently, 
long-run average) economic return to be derived from 
optimal use of the forecasts being considered can be 
computed as the probability-weighted average of the 
optimal outcomes in Equation (7),  

€ 

ER = E f [O* ( fk )] = O* ( fk )p( fk )
k=1

K

∑
 ,  (8) 

where the probability weights come from the 
refinement distribution p(fk), which expresses the 
frequencies-of-use of each of the possible forecasts 
fk.  The refinement distribution together with the K 
calibration distributions p(xi|fk) in Equation (7) contain 
the full information from the joint frequency 
distribution of the forecasts and observations, through 
its calibration-refinement factorization (Murphy and 
Winkler 1987):  

€ 

p( fk ∩ x j ) = p(x j | fk ) p( fk )    .  (9) 
Thus, comprehensive forecast verification, and in 
particular what is called "diagnostic verification" 
(Murphy et al. 1989, Murphy and Winkler 1992), is 
central to optimal forecast use and to evaluation of 
the economic worth of forecasts.   
 The economic value of forecasts is a relative 
quantity, which requires specification of some 
baseline, possibly naive, information that would be 
available to the decision maker in the absence of the 
forecasts.  In many analyses this will be an 
unchanging climatological forecast, f0, which will have 
associated with it a single optimal action a*0 that 
maximizes  

€ 

O* ( f0) =max
i

O(ai,x j )p(x j | f0)
j=1

J

∑
  .  (10) 

The expected value of the forecasts, relative to the 
constant baseline forecast f0 is then simply the 
difference between the respective expected economic 
returns, 

€ 

EV = ER − ER0 = ER −O * ( f0 )  ,  (11) 
where the second equality is consistent with Equation 
(8) because for the unchanging climatological forecast 
p(f0)=1.  In general the economic value to be derived 
from forecasts depends on the actions ai available to 
the decision maker, the decision maker's outcome 
function O(ai, xj), the information baseline against 
which the forecasts will be compared, and the quality 
of the forecasts as expressed in their joint distribution 
with the observations (Equation 9).  Forecasts can 
achieve positive economic value only if some of the 
optimal decisions associated with them are different 
from the default baseline decision a*0, and therefore 

also not all equal to each other.  Different decision 
makers having different outcome functions may well 
derive different levels of economic benefit from the 
same forecasts.   
 
 
Example: The Simplest Possible Decision Model 
"Neither has much attention been given to the added 
facility with which user requirements of weather 
forecasts can be met given specific information on 
uncertainties." (Epstein 1969a) 
 
 The general decision-analytic structure 
outlined in the previous section can perhaps be most 
easily illustrated using what has come to be known as 
the Cost/Loss ratio situation.  This prototypical 
decision problem was apparently first proposed by 
Thompson (1950), who motivated it as a 
consequence of "the principle of calculated risk," and 
has been used many times since then as a simple, 
instructive, and analytically accessible prototype for 
more general and realistic decision settings (e.g., 
Roebber and Bosart 1996).  An equivalent model was 
derived by Gringorten (1950) as part of an illustration 
of why the roles of forecaster and decision maker 
should be kept separated, and could be kept 
separated through the use of probability forecasting; 
and a similar structure was derived several decades 
earlier using nonprobabilistic forecasts by Angstrom 
(1922) and Bilham (1922).   
 The Cost-Loss ratio situation is the simplest 
possible decision problem, because it treats only the 
minimum numbers of actions (I = 2) and states of 
nature (J = 2).  To fix ideas, it is usual to imagine that 
the two states of nature correspond to occurrence (x1) 
or not (x2) of a weather state that is adverse to an 
enterprise, and that a decision can be taken (a1) or 
not (a2) to protect against the adverse weather at a 
cost –C.  If the protective action is taken the effects of 
the adverse weather are assumed to be completely 
negated, and if the adverse weather occurs without 
protection a loss –L is incurred.  Accordingly there are 
four possible outcomes O(ai, xj):  O(a1, x1) =O(a1, x2) 
= –C, O(a2, x1) = –L, and O(a2, x2) = 0, which are 
illustrated graphically in Figure 4.   
 

 
Figure 4.  Illustration of the outcome function for the 
Cost/Loss ratio decision problem. 
 
 Consider now probability forecasts fk for the 
adverse weather event, which for simplicity (and 
consistent with real-world experience with operational 
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PoP forecasts) are assumed to be calibrated, so that 
the (respective Bernoulli) calibration distribution 
probabilities satisfy p(x1|fk) = fk and p(x2|fk) = 1 – fk.  
The maximization in Equation (7) will then compare 
the two quantities  

€ 

−C fk −C (1− fk ) = −C      (12a) 
for the a1 (protect) action, and  

€ 

−L fk − 0 (1− fk ) = −L fk       (12b) 
for the a2 (do not protect) action.  Thus i = 1 
(protection) maximizes Equation (7) when fk > C/L, 
yielding O*(fk) = –C in these cases.  Similarly i = 2 (no 
protection ) maximizes Equation (7) when fk < C/L, 
yielding O*(fk) = –L fk under this condition.  Location of 
the decision threshold at C/L is the origin of the name 
"Cost/Loss ratio" problem.   
 
Table 1.  Refinement distribution for a set of hypothetical 
probability forecasts for a binary predictand.  The example in 
the text assumes the forecasts are perfectly calibrated so 
that p(x1|fk) = fk, k = 1, . . ., 11.   
 
 k  fk  p(fk) 
 1 0.0 .290 
 2 0.1 .160 
 3 0.2 .100 
 4 0.3 .080 
 5 0.4 .070 
 6 0.5 .065 
 7 0.6 .060 
 8 0.7 .055 
 9 0.8 .050 
 10 0.9 .050 
 11 1.0 .020 
 
 To illustrate the computation of forecast 
value, consider the refinement distribution p(fk) for a 
hypothetical set of probability forecasts for a 
dichotomous outcome variable, shown in Table 1.  
Assuming that these forecasts are perfectly calibrated 
(conditionally unbiased) so that p(x1|fk) = fk, the 
forecasts will also be unconditionally unbiased, 
yielding the climatological forecast 

€ 

f0 = fk p( fk )
k=1

11

∑ = 0.300
  .   (13) 

Thus Equation (10) yields the expected return per 
decision associated with the climatological information 
O*(f0) = –C for decision makers whose problems 
involve C/L < 0.3, and O*(f0) = –0.300 L for decision 
makers having C/L < 0.3.   
 The solid curve in Figure 5 shows the 
expected forecast value (Equation 11) for the 
forecasts summarized in Table 1 relative to the 
constant climatological forecast (Equation 13), over 
the full meaningful range of the Cost/Loss ratio, 0 < 
C/L < 1.  Value approaches zero at the extremes of 
this range because the best decisions are 
increasingly obvious there without the forecast 
information: as C/L approaches zero the protective 
action will always be taken because it costs almost 
nothing, consistent with the best action associated 
with the climatological forecast for small C/L; and as 

C approaches L the protective action will never be 
taken because this will save no money even in the 
event of adverse weather for large C/L, again 
consistent with the climatological forecast.  Forecast 
value is maximized for C/L = f0 = 0.3 because the 
climatological information is least informative about 
the best action for this decision problem.   
 

 
Figure 5.  Expected economic value of calibrated probability 
forecasts from Table 1 (solid curve), and nonprobabilistic 
forecasts derived from them (dashed and dot-dashed lines), 
as functions of the Cost/Loss ratio.   
 
 
Why Probability Forecasts Are More Valuable  
"In any discussion of the role of weather prediction in 
the decision process, it must be kept clear that there 
is a duality of roles.  The meteorologist analyzes and 
evaluates the present and past weather, and 
estimates the future state of the weather; the 
entrepreneur or other user of the meteorological 
service must be able to evaluate these predictions 
and analyses and translate them into the most 
favorable or most desirable course of action." (Epstein 
1962).   
 
 Consider now the use of nonprobabilistic 
forecasts in the decision problem described in the 
previous section.  Here the forecaster may only 
forecast "adverse weather" or "no adverse weather," 
without the ability to quantify the forecast uncertainty 
using probabilities.  The forecaster will in that case 
issue the "adverse weather" forecast when the 
probability for that event is sufficiently high, i.e., when 
fk ≥ p*, where p* is some threshold probability.  That 
is, to make these nonprobabilistic forecasts the 
forecaster must degrade the information content of his 
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or her probabilistic judgments about the upcoming 
weather, and that is the ultimate source of the 
problem.   
 Ideally, p* would be chosen to be consistent 
with the decision problems faced by the users of the 
forecasts.  But forecasters rarely have a single client, 
or a homogeneous audience, for their forecasts.  
Necessarily then the choice of a p* must be 
somewhat arbitrary, and whatever threshold is chosen 
will better serve some forecast users than others.  
Here two of the possible choices for p* will be 
considered: p*clim = 0.3 yields "adverse weather" 
forecasts whenever in the forecaster's judgment the 
event probability is at least as large as its 
climatological probability, and p*max = 0.5 leads to 
"adverse weather" forecasts whenever this event is at 
least as likely as its complement.   
 Again using the hypothetical verification data 
in Table 1, 45% of forecasts will be for "adverse 
weather" when the forecaster uses p*clim, and this 
fraction will be 30% when using p*max.  Decision 
makers following these forecasts will take protective 
action when warned of "adverse weather," incurring 
their cost C on those occasions.  Similarly these 
decision makers will not take protective action when 
"no adverse weather" is forecast, and will incur their 
loss L with overall probability 
(0.29)(0.0)+(0.16)(0.1)+(0.10)(0.2)=0.036  when the 
forecaster uses p*clim and 
(0.29)(0.0)+(0.16)(0.1)+(0.10)(0.2)+(0.08)(0.3)+(0.07)(
0.4)=0.088 when p*max is used.   
 The dashed and dash-dotted lines in Figure 
5 show forecast value, again relative to optimal use of 
the climatological probabilities, for these 
nonprobabilistic forecasts based on p*clim and p*max, 
respectively.  In both cases forecast value is never 
more than for the probabilistic forecasts shown by the 
solid line, and is equal only for p* = C/L.  That is, the 
thresholding process that produces the 
nonprobabilistic forecasts specializes optimal use of 
those forecasts only for users with C/L equal to the 
threshold probability.  Outcomes for decision makers 
with Cost/Loss ratios different from p* are accordingly 
suboptimal.  In effect the nonprobabilistic forecaster is 
making the decision, usurping the role of the decision 
makers without specific knowledge of any decision 
maker's economic situation.   
 Forecast value in Figure 5 for all three of the 
forecast types achieves maxima for C/L = f0 = 0.3 
because the climatological information is least 
informative for this Cost/Loss ratio.  The economic 
value for optimally used probability forecasts is 
everywhere nonnegative, but the economic value of 
the nonprobabilistic forecasts is negative for many 
decision problems.  That is, for substantial ranges of 
the Cost/Loss ratio, decision makers are better served 
by following the naive strategy of always or never 
protecting, depending on whether their C/L is smaller 
or greater than f0, respectively, than by using the 
nonprobabilistic forecasts.   
 The forecast value results here have been 
computed using the single illustrative refinement 

distribution in Table 1, two selected threshold 
probabilities, and under the assumption that the 
probability forecasts are perfectly calibrated.  The 
Cost/Loss ratio situation has been used here to 
illustrate quantitative use of forecasts in decision 
problems because is simple and straightforward to 
analyze, but the result that optimally used probability 
forecasts dominate nonprobabilistic forecasts in terms 
of economic value is general (e.g., Alexandridis and 
Krzysztofowicz 1985, Krzysztofowicz 1983, Wilks et 
al. 1993), because degradation of the information 
content of probability forecasts to a single number 
prevents decision makers from optimizing their 
actions.  Regardless of the accuracy or skill of 
nonprobabilistic forecasts, unless they are perfect 
(i.e., never wrong) there will be some forecast users 
(some range of C/L) for whom their value is negative 
relative to optimal use of the climatological probability 
(Thompson 1952).  The superior value of probability 
forecasts is robust to the assumption of perfect 
calibration of the forecasts, unless the forecast quality 
is quite poor (Murphy 1977).   
 
 
More Elaborate Decision Models 
"Decision-making models have traditionally neglected 
the impact of potentially useful information contained 
in forecasts for periods beyond the initial period."  
(Epstein and Murphy 1988) 
 
 The idealized Cost/Loss decision framework 
can be a reasonable approximation to many real 
decision problems that are isolated in time, where 
decisions made and outcomes experienced on one 
occasion do not affect subsequent actions and 
outcomes.  However, some decision problems are 
inherently sequential.  For example, one example that 
has motivated Cost/Loss analysis is the decision to 
pour concrete or not, where adverse weather requires 
removal of a ruined pour and necessitates 
subsequent attempt(s) to complete the job 
(Thompson 1950, Roebber and Bosart 1996).  In this 
setting there is a sequence of decisions that may 
continue for multiple periods, until the decision to pour 
concrete is followed by the occurrence of "no adverse 
weather."  Alternatively, if the decision in question is 
whether to protect a frost-sensitive crop (Baquet et al. 
1976, Katz et al. 1982, Thompson 1952), protective 
action may be contemplated on a sequence of nights, 
which may last until either the crop is harvested, all 
danger of frost has passed, or a complete loss is 
sustained.  Such inherently sequential decision 
problems are known as "dynamic." 
 In the paper "Use and Value of Multiple-
Period Forecasts in a Dynamic Model of the Cost-
Loss Ratio Situation" Epstein and Murphy (1988) 
extended an earlier dynamic Cost/Loss decision 
analysis (Murphy et al. 1985) to include treatment of 
serially correlated weather forecasts and events.  
Even without consideration of serial correlation of the 
events and probabilities, the two-stage Cost/Loss 
decision situation (which is the simplest possible 
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dynamic decision problem) is much more 
complicated.  Figure 6, from Winkler and Murphy 
(1985) illustrates the structure of this problem with a 
decision tree, in which the square nodes represent 
the decisions (Protect or Not Protect), the circle nodes 
represent the events (adverse Weather or Not) where 
the adverse event occurs with probability p, and the 
terminal payoffs at the right of the figure indicate 
cumulative protection costs and (if applicable) loss.  
One branch of this tree has no decision node for Day 
2 because it is assumed that the loss L can be 
incurred only once.   

 
Figure 6.  Decision tree for the 2-stage dynamic Cost/Loss 
decision problem.   
 
 The decision tree for this simplest possible 
dynamic decision problem is already fairly 
complicated, and its analysis is complicated further if 
the ex ante value of forecasts is to be computed 
because then refinement distributions for the 
forecasts must be specified, and the tree analyzed for 
all combinations of Day 1 and Day 2 forecasts.  It is 
more complicated still when more than two decision 
periods are considered; and/or when the temporal 
dependence structure of the forecasts is included, 
necessitating the modeling of the joint distribution of 
the forecasts on all days in the sequence.  Yet more 
complex analyses will also have more than two event 
nodes at each stage.   
 A seemingly odd feature of sequential 
decision problems is that they are solved backward, 
with the last decision period considered first, and the 
first decision period considered last.  Consider the 
four terminal payoffs at the top of Figure 6.  The 
expected return following the decision to Protect on 
Day 2 is –2pC–2(1–p)C = –2C, and the expected 

return following the no-protection action is –p(C+L)–
(1–p)C = –C–pL, as indicated below the respective 
Day 2 event nodes.  If the decision process has 
reached the decision node from which these four 
branches originate, the optimal action will be the one 
corresponding to the greater expected return, or 
p>C/L.  Similar calculations are also performed for the 
other Day-2 decision nodes, and the larger of each of 
these pairs of expected returns become the "terminal" 
payoffs for the Day-1 decision.   
 Direct analysis of this kind is feasible only for 
very simple decision trees such as the one in Figure 
6.  More generally these problems are solved using a 
computation approach known as stochastic dynamic 
programming (e.g., Kennedy 1986).  As before, the 
goal is to maximize expected return over the full 
sequence of decisions, but it is not necessary to draw 
or even imagine the decision tree.  The tractability of 
the approach requires that the status of the decision 
problem at a given time can be specified by the 
values of a few state variables.  As the solution 
procedure works backward in time, it is then not 
necessary to know the complete sequence of decision 
and event pairs in preceding periods (which is good, 
since these will yet to have been computed), but only 
their cumulative effects as reflected by the state 
variables.  Problems amenable to solution in this way 
are accordingly sometimes called Markov decision 
problems.  Thinking in terms of a decision tree, this 
structure means that there are as many decision 
nodes in a given decision period as there are possible 
combinations of state variables.  For example, if a 
problem can be described using two state variables, 
each of which may take on one of ten values at each 
stage, then there are 100 branches on the decision 
tree at that decision node.  In Figure 6 there is one 
state variable (weather state), which can take on one 
of two values (adverse or not).   
 The stochastic dynamic recursion can be 
expressed as  

€ 

ERt λt{ }

  = E f max
i

(ERt−1{O[ai,x j ,λt ]}p[x j | fk ])
j=1

J

∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥  ,  (14) 

where λt is the (generally vector-valued) state variable 
at stage t, and time is counted backward so that the 
final decision in the sequence is for t = 1.  The 
outcome function includes also the state vector as an 
additional argument, which specifies the particular 
node on the decision tree in which the process 
currently resides.  Accordingly, the outcome function 
in effect points to the state in the next time period: 

€ 

O[ai,x j ,λt ] = λt−1  .   (15) 
The expected returns computed in Equation (14) 
pertain to the current and all subsequent decision 
periods, and the outer expectation pertains to the 
frequency-of-use of the possible forecasts expressed 
by their refinement distribution.  The recursion in 
Equation (14) is initialized by setting the ER0(λ0) equal 
to the terminal payoffs (e.g., outcome values on the 
right-hand side of Figure 6).  During the calculation it 



	
   9 

is possible to save the optimal actions at each 
juncture for subsequent analysis or to provide 
guidance to decision makers.   
 Given a large enough number of state 
variables, complex and realistic decision problems 
can be modeled.  For example, Wilks and Wolfe 
(1998) model irrigation decisions for a lettuce crop, 
over a 62-day decision period.  Growth of the crop 
was represented using three state variables: plant dry 
matter, soil moisture, and a stress index.  Serial 
correlation in the weather forecasts, and therefore 
also in the implicitly represented weather, was 
represented by including three state variables for the 
previous day's temperature forecast, the day-1 
precipitation probability, the and day-2 precipitation 
probability.  Accordingly the probabilities in the 
refinement distribution, with respect to which the outer 
expectation Ef[•] in Equation (14) is taken, also 
depend on the state vector.   
 Figure 7 shows thresholds for the day-1 PoP 
forecast below which an irrigation is optimal, as a 
function of date in the growing season (horizontal) 
and the available soil moisture status (vertical), when 
today's temperature forecast is 17.5˚C, and the day-2 
PoP forecast is 0.0 (top panel), 0.4 (middle panel), 
and 0.8 (bottom panel).  These threshold probabilities 
increase as the precipitation probability for day 2 
increases.  They are also smaller (meaning that 
irrigation is more sensitively needed) very early in the 
season when the plants are small and the absolute 
amount of soil moisture is small, and late in the 
season when good market size must be achieved 
within the growing period.   
 
 
Some Connections with Forecast Verification 
"As a final note . . . I would introduce the general 
problem of forecast verification.  Would not an 
optimum forecasting (or analysis) procedure provide 
maximum discrimination among, not necessarily the 
types of weather which may occur, but the utilities of 
the decisions from which one must choose?" (Epstein 
1962) 
 
 In this paper I have reviewed some of Ed 
Epstein's contributions in probability forecasting and 
in optimal use and valuation of forecasts.  The 
relationship of these topics to some of his work in 
forecast verification also merits some mention.   
 The quote at the beginning of this section 
from Epstein (1962) anticipates construction of a 
verification score using economic value as the 
specific metric.  Murphy and Epstein (1967a) 
emphasized that one central purpose of forecast 
verification is economic — pertaining to the value of 
information — and that the appropriate metric is 
decision-theoretic utility.  Murphy (1977, his Equation 
11) appears to have been the first to define such a 
measure, although the approach seems not to have 
been used until rediscovered nearly a quarter-century 
later (Richardson 2000, Wilks 2001).   
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Figure 7.  Probability thresholds triggering lettuce irrigation, 
as functions of day of the year (horizontal), and soil moisture 
(vertical) when the temperature forecast is 17.5˚C, and the 
PoP forecast for the following day is 0.0 (upper panel), 0.4 
(middle panel), and 0.8 (lower panel).   
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 Another connection with Epstein's work in 
forecast verification is that his original derivation of 
the widely used Ranked Probability Score (RPS, 
Epstein 1969b) was in terms of decision theory, 
beginning with extension of the 2 x 2 Cost/Loss 
outcome matrix of Figure 4 to the more general K x K 
setting.  The definition of RPS in terms of expected 
utility assured that the score is strictly proper, so that  
forecasters can receive best expected score only by 
forecasting their true beliefs (Murphy and Epstein 
1967b).   
 Finally, availability of comprehensive 
(diagnostic) verification data is essential in order for 
users to derive full benefit from forecasts, by knowing 
that probability forecasts are well calibrated, or failing 
that having sufficient information to compute 
calibrated Bayesian posterior probabilities.  
Comprehensive forecast verification data is also 
necessary in order to compute expected economic 
value of forecasts ex ante.  Similarly, having a good 
estimate of the joint distribution of forecasts and 
observations is a necessary starting point for 
modeling possible improved future forecasts (e.g., 
sharper refinement distributions for calibrated 
forecasts), leading to the ability to compute expected 
economic value to be derived from investments in 
those improvements.   
 
 
Concluding Remarks 
 Uncertainty is inherent in the chaotic 
dynamics of the atmosphere, and probability 
forecasting is necessary to communicate the resulting 
uncertainty in its future behavior.  Probability 
forecasts are essential for optimal, rational decision 
making, for realizing full potential economic value of 
forecasts, and to allow separation of the roles of 
forecaster and decision maker.  Ed Epstein was well 
ahead of his time in understanding all of these things, 
and he made important contributions to their being 
understood and appreciated more widely.   
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