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1.  Introduction 
 Most often forecast quality is characterized using 
scalar (i.e., single-number) verification statistics such 
as mean squared error, or the ranked probability 
score.  Although restricting attention to one or a small 
number of scalar statistics simplifies the verification 
process both computationally and conceptually, this 
practice inevitably masks some aspects of forecast 
performance even in the most restricted verification 
settings.  The problem arises because the 
dimensionality (Murphy 1991) of the joint distribution 
of forecasts and observations (Murphy and Winkler 
1987) is large, especially in settings involving 
probability forecasts.  Distributions-oriented (Murphy 
1997), or diagnostic (Murphy et al. 1989, Murphy and 
Winkler 1992), verification methods communicate the 
richness of verification data sets by respecting their 
dimensionality, but at the same time must overcome 
the problem of how best to portray the high-
dimensional information.   
 Arguably the most effective approaches to 
communicating the full information content of a joint 
distribution of forecasts and observations have 
involved the use of well-designed graphics, although 
only a small number of these have yet been devised.  
By far the most commonly used diagnostic verification 
graphic is the reliability diagram (Murphy and Winkler 
1977, Wilks 2011).  Reliability diagrams show the 
calibration-refinement factorization of the joint 
distribution of probability forecasts for dichotomous 
("yes/no") events, by plotting subsample event 
relative frequency as a function of forecast probability 
(the calibration), and including also a plot of the 
frequency-of-use of each of the possible scalar 
probability forecasts (the refinement).   
 Probability forecasts are most frequently issued 
for dichotomous events, so that the reliability diagram 
is appropriate and effective for graphically displaying 
the relevant joint distribution.  However, probability 
forecasts may also be issued jointly for more than two 
predictand categories, notably including 3-category 
temperature or precipitation forecasts at lead times of 
a week and longer (e.g., Van den Dool 2007, Livezey 
and Timofeyeva 2008, Barnston et al. 2010).  In this 
format the predictand categories are often defined in 
terms of the climatological terciles, so that the below-
normal (cold, or dry), near-normal, and above-normal 
(warm, or wet) categories each have climatological 
occurrence probabilities of 1/3.  Diagnostic verification 
of such forecasts has been approached by reducing 
the three-element probability forecast vectors to 
collections of dichotomous probabilities (e.g., Wilks 
2000, Wilks and Godfrey 2002, Barnston et al. 2010) 
but that approach is not fully satisfying because it 

neglects relationships among probabilities assigned to 
the different events (Murphy and Hsu 1986).   
 This paper proposes an extension of the well-
known reliability diagram, to verification of probability 
forecast vectors pertaining to three distinct outcome 
categories using a two-dimensional graphic called the 
calibration simplex, which represents the calibration-
refinement factorization of the full joint distribution of 
these forecasts and their corresponding observations.   
 
2.  Structure of the Calibration Simplex  
 Diagnostic verification methods are those that 
communicate the joint frequency distribution of the 
forecasts and their corresponding observations 
(Murphy and Winkler 1987),  
 
  

€ 

Pr{ f i,  o j} = Pr{ f i ∩o j} ;  i =1,,I;  j =1,J    .  (1) 
 
Here the probabilities have been rounded to one of I 
distinct possible forecasts fi , each of which pertains to 
J possible observations or outcomes oj.  In the case of 
forecasts for dichotomous outcomes, J = 2.  For 
example, in that case there would be I = 11 probability 
forecasts if rounded to tenths, with the distinct 
forecasts ranging from f1 = 0.0 through f11 = 1.0.   
 It can be more informative to work with the joint 
distribution in terms of one of its factorizations 
(Murphy and Winkler 1987).  The reliability diagram is 
based on the calibration-refinement factorization,  
 
  

€ 

Pr{ f i,  o j} = Pr{o j | f i} Pr{ fi} ;  i =1,,I;  j =1,J  . (2) 
 
Thus, the full joint distribution can be decomposed 
into a collection of I conditional distributions Pr{oj|fi} of 
the observations given each of the possible forecasts 
fi, called the calibration distributions; and a single I-
element frequency distribution Pr{fi} specifying the 
frequencies-of-use of the possible forecasts, called 
the refinement distribution.  In the case of the 
reliability diagram, the calibration distributions are 
Bernoulli (i.e., binomial with N = 1) distributions, 
defined by the probability distribution function 

€ 

Pr{o | f i} = pi
o(1− pi)

1−o
  ,  o = 0, 1 ,   (3) 

where each pi is estimated by its empirical (in the 
verification data set) conditional relative frequency 

€ 

ˆ p i  
of the "yes" event occurring on occasions following 
the corresponding forecast fi.  Each of the I calibration 
distributions is fully characterized by its estimated 
Bernoulli probability 

€ 

ˆ p i , and collectively these define 
the vertical positions of the plotted points in the main 
portion of the reliability diagram.  A histogram, or 
other quantitative representation of the refinement 
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distribution, completes the graphical portrayal of 
Equation (2).   
 Probability vectors fi = [fB,i, fN,i, fA,i]T pertaining to 
the three mutually exclusive and collectively 
exhaustive outcomes "below-", "near-", and "above-
normal", can be plotted in two dimensions because 
the three forecast probabilities in each vector must 
sum to 1.  The geometrically appropriate graph in this 
case is the regular 2-simplex (Epstein and Murphy 
1965, Murphy 1972), which takes the shape of an 
equilateral triangle.  Each of the corners of the 2-
simplex corresponds to forecast certainty (i.e., 100% 
probability) for one of the three outcomes being 
forecast.  The point within the simplex at which a 
three-element probability vector fi is plotted is located 
at distances proportional to the probabilities for each 
of the three outcomes, perpendicularly from the sides 
of the simplex opposite the respective corners.  This 
plotting system generalizes the reliability diagram 
because the 1-simplex appropriate to 2-element 
probability forecasts for dichotomous events is the 
unit interval on the real line, which is the horizontal 
axis of the reliability diagram.   
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Figure 1.  Calibration simplexes illustrating well calibrated 
forecasts exhibiting (a) lower and (b) higher sharpness. 

 Figure 1 illustrates the plotting of discretized 
forecast vectors onto the simplex, which has been 
rendered as a tessellation of hexagons.  Each scalar 
forecast probability has been rounded to one of the K 
= 10 values 0/9, 1/9, . . ., 9/9, yielding I = K(K+1)/2 = 
55 distinct possible vector forecasts fi, each of which 
is represented by one of the hexagons.  The 
hexagons at the three vertices represent forecasts 
assigning all probability to the outcome labeled at that 
corner.  Hexagons representing other forecast vectors 
are located at perpendicular distances from the 
respective opposite sides, that are indicated by the 
probability labels in the margins.  For example, 
forecasts of equal probability for the middle category, 
fN, are located along the same horizontal row of 
hexagons (perpendicularly upward from the horizontal 
bottom edge of the simplex), as indicated by the 
probability labels increasing upward along the left 
edge of the figure.  Probability labels for the above-
normal category, fA, increase downward along the 
right edge of the simplex, and probability labels for the 
below-normal category, fB, increase to the left along 
the bottom edge of the simplex.  The result, for 
example, is that the large dot in the center of Figure 
1a locates the climatological forecast vector fclim = 
[1/3, 1/3, 1/3]T.  Similarly, the forecasts in Figure 1a 
having the largest above-normal probability are [2/9, 
2/9, 5/9]T and [1/9, 3/9, 5/9]T, which are represented 
by the glyphs located furthest to the right in that 
diagram.  Any two of the three forecast vector 
elements are sufficient to locate that vector's position 
on the simplex.   
 Figure 1 illustrates the graphical representation of 
refinement distributions Pr{fi} as glyph scatterplots 
(e.g., Wilks 2011), where the circle areas are 
proportional to the subsample sizes.  Empty 
hexagons represent forecast vectors that were never 
used in the verification data sets under consideration.   
 Generalizing Equation 3 for the calibration 
distributions, in the case of three-element vector 
forecasts each of the I calibration distributions is 
multinomial, again with N = 1: 

€ 

Pr{o | fi} = pB ,i
oB pA ,i

oA (1− pB ,i − pA ,i)
1−oB −oA

,   
   oB, oA = 0, 1,  oB+oA ≤ 1 .  (4) 
Thus each of the I calibration distributions are fully 
determined by any two of the three empirical (within 
the verification data set) conditional relative 
frequencies 

€ 

ˆ p B ,i , 

€ 

ˆ p A ,i , and 

€ 

ˆ p N ,i  = 1– 

€ 

ˆ p B ,i  – 

€ 

ˆ p A ,i  of the 
three events being forecast by fi, and therefore can be 
represented by a two-dimensional vector defined by, 
for example, 

€ 

ˆ p B ,i  and 

€ 

ˆ p A ,i  within the ith hexagon of the 
simplex.   
 Figure 2 illustrates schematically how these 
conditional relative frequencies for the below- and 
above-normal outcomes are represented within each 
hexagon, using the corresponding miscalibration 
errors, or differences between the conditional average 
observations 

€ 

ˆ p B ,i  and 

€ 

ˆ p A ,i , and the respective forecast 
vector elements:  
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€ 

eB ,i

eA ,i

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

ˆ p B ,i − fB ,i

ˆ p A ,i − fA ,i

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
   .   (5) 

These vector conditional miscalibration errors are 
plotted within their respective hexagons, using a 
coordinate system similar to that for the overall 
simplex, but with the origins at the centers of the 
hexagons.  For a well-calibrated forecast subsample 
fi, both elements of Equation 5 will be zero, and the 
dot representing the corresponding subsample size 
will be plotted at the center of the ith hexagon, as 
illustrated by the grey dot in Figure 2, and by all 
subsamples in both panels of Figure 1.  In contrast, 
the solid dot in Figure 2 shows the plotting position 
when the above-normal category has been 
conditionally underforecast by 0.2 probability units, 
together with overforecasting of the below- and near-
normal categories by 0.1 probability units each.  In 
this case the location for the glyph representing the 
corresponding element of the refinement distribution 
will be displaced toward the "A" vertex of the simplex, 
consistent with the conditional outcome vector having 
a higher relative frequency than forecast for the 
above-normal category.   

0.0
–0.1
–0.2
–0.3

+0.1
+0.2
+0.3

M
isc

ali
br

at
ion

 e
rro

r, 
e N,

Ne
ar

-n
or

m
al 

ca
te

go
ry

0.0
+0

.1
+0

.2
+0

.3

–0
.1–0

.2–0
.3

0.0+0.1+0.2+0.3

–0.1
–0.2

–0.3

 Miscalibration error, e
A ,

Above-normal category

 Miscalibration error, e B
,

Below-normal category

 
Figure 2.  Plotting schematic showing locations of refinement 
distribution glyphs for calibrated forecasts (zero 
miscalibration errors, grey dashed arrows and point), and 
miscalibrated forecasts (nonzero calibration errors, black 
solid arrows and point).   
 
 
3  Idealized Forecast Examples 
 Characteristic patterns of simplex glyph sizes and 
placements are diagnostic for different aspects of 
overall forecast performance, analogously to the 
situation for the reliability diagram (Wilks 2011, p. 
335).  These are illustrated in this section using 
simple idealized calibration and refinement 
distributions.   
 
a.  Sharpness:  refinement distributions 
 Sharpness is a characteristic of the refinement 
distribution, independent of the relationship between 
the forecasts and observations.  Forecast sharpness 

is commonly characterized using a measure of the 
dispersion of the refinement distribution, such as the 
standard deviation or variance (e.g., Wilks 2001).  
Forecasts that deviate frequently, including relatively 
large differences from, the climatological forecast are 
referred to as sharp.  Forecasts exhibiting poor 
sharpness deviate rarely and relatively little from the 
climatological forecast.   
 Figure 1 shows two refinement distributions, with 
low (Figure 1a) and higher sharpness (Figure 1b), 
plotted as glyph histogram scatterplots on the 
simplex.  The two distributions are defined 
quantitatively in Wilks (2013a).  In both cases the 
resulting forecasts are shown as perfectly calibrated, 
so all of the circles representing subsample relative 
frequencies are plotted at the centers of their 
hexagons.  For the low-sharpness forecasts in Figure 
1a, it is clear that the most common forecast is fclim = 
(1/3, 1/3, 1/3)T, which accounts for 68.3% of the 
forecasts.  Furthermore, the individual forecast 
elements deviate no more than 2/9 from fclim, and only 
very rarely are those deviations larger than 1/9.  In 
contrast, the sharper forecasts in Figure 1b often 
deviate quite strongly from fclim (which accounts for 
only 10.7% of the forecasts), and take on values 
throughout the unit interval for the extreme-category 
probabilities fB and fA.   
 
b.  Conditional and unconditional biases:  calibration 
distributions 
 Figure 3 shows calibration simplexes illustrating 
(a) overconfident forecasts, (b) underconfident 
forecasts, and (c) forecasts exhibiting an 
unconditional overforecasting bias for the above-
normal category.  Each of these cases is illustrated 
using the higher-sharpness refinement distribution 
shown in Figure 1b.  Again, quantitative definitions of 
the three calibration distributions are provided in Wilks 
(2013a).   
 The overconfident forecasts shown in Figure 3a 
are conditionally biased, exhibiting overforecasting for 
probabilities above the climatological 1/3, and 
underforecasting for probabilities below 1/3.  If such 
forecasts had been generated by a dynamical 
ensemble forecasting system, the overconfidence 
would be diagnostic for underdispersion (Wilks 2011, 
p. 372).  Figure 3a shows that the signature for 
overconfidence in the calibration simplex is 
displacement of the relative frequency glyphs toward 
the center of the diagram, analogously to the 
calibration function in a conventional reliability or 
attributes diagrams being tilted from the ideal 45˚ 
diagonal toward the horizontal, climatological, "no 
resolution" (Murphy and Hsu 1986) line.   
 Figure 3b shows a calibration simplex for 
conditionally biased forecasts that are underconfident, 
in the sense that probabilities smaller than 1/3 are 
overforecast and probabilities larger than 1/3 are 
underforecast.  Figure 3b shows that the signature for 
underconfidence in the calibration simplex is 
displacement of the relative frequency glyphs away 
from the climatological forecast at the center of the 
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diagram, and toward the corners of the simplex.  
Again this is analogous to the signature for 
underconfidence in the reliability diagram, in which 
the calibration function is tilted at an angle steeper 
than 45˚, and away from the climatological horizontal 
"no resolution" line, and would be diagnostic for 
overdispersion of a dynamical ensemble.   
 Finally, Figure 3c shows a calibration simplex for 
unconditionally biased forecasts, exhibiting uniform 
overforecasting of the above-normal category equally 
at the expense of both below- and near-normal.  Here 
the relative frequency glyphs are displaced upward 
and to the left, away from the "A" corner of the 
simplex.  Equivalently, the below- and near-normal 
categories have been uniformly and equally 
underforecast, at the expense of the above-normal 
category, and the result is that the glyphs are 
displaced toward the simplex edge connecting the "B" 
and "N" corners.   
 
 
4.  Real Forecast Examples 
 This section illustrates use of the calibration 
simplex to understand performance of the Climate 
Prediction Center (CPC) "extended range" forecasts 
for average temperature and accumulated 
precipitation, at lead times of 6 to 10, and 8 to 14 
days.  These are subjective probability forecasts 
generated on weekdays, during 2001-2012 for the 6-
10 day forecasts, and 2004-2012 for the 8-14 day 
forecasts, and interpolated to station locations from 
the graphical map products posted operationally at 
http://www.cpc.ncep.noaa.gov/.   
 Figure 4 shows the calibration simplexes for the 
temperature forecasts, which include n = 413,773 6-
10 day forecasts (Figure 4a) and n = 313,523 8-14 
day forecasts (Figure 4b).  Glyphs are plotted only for 
forecasts having subsample sizes of 20 or more, and 
verifying categories have been determined relative to 
the 1971-2000 normals for forecasts made through 
April 2011, and using the 1981-2010 normals 
thereafter.   
 At each of the lead times, the overwhelming 
majority of forecasts include the climatological or 
near-climatological near-normal forecast fN = 1/3, 
consistent with the conventional expectation that 
forecasts of the near-normal category will exhibit 
intrinsically weak skill (van den Dool and Toth 1991).  
Thus the sharpness for the near-normal probabilities 
is quite low.  The most frequent forecast for each of 
the lead times is the climatological probability vector 
fclim, which was issued for 34.9% of the 6-10 day 
forecasts and 35.4% of the 8-14-day forecasts.  
These percentages correspond to nclim = 144,211 and 
111,010 for the climatological forecast fclim (largest 
dots in the middles of the plots) in Figures 4a and 4b, 
respectively (compare glyph sizes in the legend).  The 
corresponding error vectors [eB, eN, eA]T are [–.085, 
.056, .029]T (Figure 4a) and [–.088, .036, .052]T 
(Figure 4b).  Accordingly both of these glyphs have 
been displaced away from the "B" vertices, indicating 
too few below-normal verifications when the 

climatological temperature forecast was issued.  The 
more extreme probability vectors were used 
correspondingly less frequently at the 8-14 day lead 
time, but overall the 6-10 day forecasts are only 
slightly sharper.   
 For both lead times, the temperature forecasts 
are only moderately well calibrated, with typical 
miscalibration errors in the range of 1/9 to 2/9.  The  
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Figure 3.  Calibration simplexes illustrating (a) overconfident 
forecasts, (b) underconfident forecasts, and (c) 
unconditionally biased forecasts.  In each case the 
refinement distribution is the same as in Figure 1b.   
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above-normal outcome is underforecast for the larger 
(≥4/9) above-normal and near-normal probabilities, as 
these subsample size glyphs are displaced toward the 
"A" corner of the simplex.  The glyph representing the 
very large subsample of fclim forecasts is displaced 
toward the edge connecting the "N" and "A" vertices, 
indicating a smaller fraction of below-normal 
outcomes than the climatologically expected 1/3.  
Both of these results are consistent with the baseline 
30-year normals lagging the quasi-linear warming 
trend that has been evident in U.S. temperature data 
since the mid-1970s (e.g., Livezey et al. 2007, Wilks 
2013b, Wilks and Livezey 2013) together with the 
mean forecasts not fully tracking the warming, as has 
also been observed for seasonal tercile forecasts 
(Wilks 2000, Wilks and Godfrey 2002, Barnston et al. 
2010).  On the other hand, displacement of glyphs 
away from the simplex center for below-normal 
probabilities of 4/9 and larger indicates an overall 
underconfidence (consistent with the pattern of glyph 
dispersion away from the center of Figure 3b), 
suggesting that these forecasts could be somewhat 
sharper without degrading their skill.  
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Figure 4.  Calibration simplexes for (a) 6-10 day, and (b) 8-
14 day temperature forecasts.   

 Calibration simplexes for the precipitation 
forecasts are shown in Figure 5, which include n =  
406,856 6-10 day forecasts (Figure 5a) and n 
=306,594 8-14 day forecasts (Figure 5b).  The  
precipitation forecasts exhibit notably less sharpness 
than their temperature counterparts in Figure 4, with 
44.9% of the 6-10 day forecasts and 44.7% of the 8-
14 day forecasts using the climatological probabilities 
fclim.  As was the case for the temperature forecasts, 
fN = 1/3 is overwhelmingly the most common near-
normal forecast.  The most extreme probabilities have 
been used somewhat less frequently in the 8-14 day 
precipitation forecasts, but overall these are only 
slightly less sharp that the 6-10 day forecasts.  At 
both lead times there is a clear tendency for the 
subsample-size glyphs to be displaced toward the "B" 
vertex, indicating underforecasting of the below-
normal category, and corresponding overforecasting 
in roughly equal proportions of the near-normal and 
above-normal outcomes.  Figure 5 also indicates 
strong overconfidence in the larger (≥4/9) probabilities 
for the near-normal category, for both lead times.   
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Figure 5.  As Figure 4, for precipitation forecasts.   
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5.  Summary and Conclusions 
 Gaining a full appreciation of the performance of 
a set of forecasts requires investigation of the joint 
distribution of the forecasts and corresponding 
observations (Murphy and Winkler 1987), and a 
graphical approach to this exposition will often be the 
most immediately informative.  The well-known 
reliability diagram for probability forecasts of 
dichotomous events is the most commonly 
encountered such graphical device.  This paper has 
defined and illustrated a natural extension of the 
reliability diagram to probability forecasts for three 
disjoint events, called the calibration simplex.  It 
displays the refinement distribution for such forecasts 
using a glyph scatterplot histogram of the K(K+1)/2 
possible vector forecasts that result when each 
probability element has been rounded to one of K 
discrete values.  Simultaneously it shows the two 
empirical outcome relative frequencies conditional on 
each forecast vector that are necessary to fully 
characterize the corresponding refinement 
distributions, using displacements of the glyphs from 
central plotting locations.   
 Use of the calibration simplex has been 
illustrated using the CPC 6-10 and 8-14 day 
subjective temperature and precipitation forecasts.  
The temperature forecasts exhibit an unconditional 
bias consistent with the average forecasts lagging the 
ongoing climate warming, as has been observed also 
for seasonal forecasts, but these graphs also indicate 
that greater sharpness for the below- and above-
normal elements of the forecast vectors could be 
employed without degrading overall accuracy or skill.  
The near-normal element of the precipitation forecast 
vectors were seen to be strongly overconfident; with 
overall underforecasting of the below-normal 
category, and corresponding overforecasting in 
roughly equal proportions of the near-normal and 
above-normal outcomes.   
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