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1. INTRODUCTION 

Previous work by Williams (1999), Schultz et 

al. (2009), and Gatlin and Goodman (2010) 

demonstrate the correlation between rapid 

increases in total flash rate (i.e., "lightning 

jumps") and severe weather occurrence.  

Recent studies (Schultz et al. 2009, Gatlin and 

Goodman 2010, Schultz et al. 2011) have 

quantified the lightning jump based on statistical 

measures. Schultz et al. (2009, 2011) presented 

strong results for the use of total lightning from 

lightning mapping arrays (LMAs) to aid in the 

prediction of severe and hazardous weather 

using an objective lightning jump algorithm (LJA) 

with semi-automated tracking on a large number 

of storms. Schultz et al. (2009) developed and 

tested 4 different lightning jump algorithm 

configurations and found that the 2σ algorithm 

had the best skill in nowcasting severe weather 

potential.  

However, Schultz et al. (2009, 2011) lack full 

automation and objective tracking techniques 

that utilizes both radar and satellite based 

products.  Also, these studies did not account for 

what the Geostationary Lightning Mapper (GLM) 

will observe once on orbit in the GOES-R 

satellite (Goodman et al. 2013).  Therefore, the 

goal of this study is to develop a fully automated 

framework, encompassing objective tracking, 

GLM proxy lightning data and the LJA. This 

aspect is an important element in the transition 

of the total LJA concept from a research based 

algorithm to an operational algorithm. This 

framework will also serve as a vessel to refine 

the LJA itself to enhance its operational 

applicability.   

 

2. DATA AND METHODOLOGY 

The system in which the lightning jump is 

implemented consists of three components: 

lightning data, thunderstorm tracking, and the 

LJA. Each component plays a vital role in the 

automation of the LJA for operational uses. A 

GLM proxy dataset has been developed for use 

within the system because an optical instrument 

does not currently exist at geostationary orbit. 

Also, GLM observes a different component of 

lightning than the LMA (optical radiances at 

cloud top vs. VHF observations). It is necessary 

to utilize an automated, objective tracking 

scheme to assign lightning flashes to individual 

storms in order to compute lightning time 

histories necessary for jump identification. 

Finally, the algorithm itself is needed to calculate 

lightning jumps. 

 

2.1  Domain 

This research study includes > 90 event 

days consisting of ~500-1000 storm clusters 

between 2002 and 2011 within 125 km range of 

the network center of the North Alabama 

Lightning Mapping Array (Fig. 1; Table 1). This 

dataset is a significant subset of the events 

included in Schultz et al. (2011).  
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Tunable Parameter 
Schultz et al. 

2011 
This study 

Sigma threshold 

statistical jump threshold 
2.0 

0.75, 1.0, 1.25, 1.5, 

1.75, 2.0, 2.25, 2.5 

Flash rate threshold 

Minimum flash rate (flashes/min
1
) required to activate the algorithm 

10 1, 5, 10, 15, 20 

Algorithm Spin-up 

Minimum time required to determine a jump 
14 minutes 14 minutes 

Storm report distance 

Additional distance from cell boundary 

0 (Only area within 

cell) 
5 km 

Forecast period 

Time following a jump 
45 minutes 45 minutes 

Domain range 

From NALMA center 

200 km (most 

within 

150 km) 

125 km 

Spatial Scale 

Based on WDSSII tracking parameters 
----- 

5 (storm area of 

~160 km
2
) 

 

 

Storm clusters are included in the database 

if they have a minimum lifetime of at least 30 

minutes within the domain. Only the portion of 

the cluster track that is within the domain is 

included in the dataset.  

 

 
Fig 1. The large rectangle indicates storm 

tracking domain with 125km range ring centered at 

the LMA center. 

 

 

 

2.2  GLM Proxy Data 

Previous implementations of the LJA 

algorithm involved ground-based datasets using 

three-dimensional LMAs. For this study, the 

GLM Proxy Data set (Bateman 2013) is used. 

The GLM Proxy Data was developed from an 

empirical model between the space-borne 

lightning imager sensor (LIS) and the North 

Alabama LMA (Bateman et al. 2008). The LIS, 

like the GLM, records optical events which are 

grouped and combined into flashes (Mach et al. 

2007) whereas the LMA detects VHF 

electromagnetic radiation which are combined 

into flashes using a clustering algorithm. An 

example flash visual comparison between the 

LIS and LMA is shown in Fig. 2. The 

comparative analysis of these two lightning data 

sets created a Monte Carlo look-up table to 

select realistic optically-based flashes at GLM 

resolution based on the input of LMA flashes for 

a selected case.  Each GLM Proxy flash location 

is determined by the amplitude weighted 

centroid of the groups/events. GLM Proxy 

Table 1. Comparison of the tunable parameters in the LJA, verification, and database used in Schultz et al. 

(2011) and this study. 



flashes are gridded to a 0.08° x 0.08° grid at 1 

and 5 minute running averages every minute.  

 
Fig. 2. An example visual comparison of the spatial 
differences of a single flash between an optical 
observation from the TRMM-LIS and the VHF 
radiation from the North Alabama LMA on 5 June 
2006. Each LIS flash location is determined by the 
amplitude weighted centroid of the groups/events. 
The LMA flash consist of clustered radiation sources 
recorded at 80 µs intervals along the path of the flash. 

2.3  Thunderstorm Tracking 

Previous studies have used reflectivity 

based thresholds for thunderstorm tracking (35 

dBZ at -15°C, Schultz et al. 2009). This study 

combines the 5-minute GLM Proxy flash rate 

density (FLCT5; Fig. 3a) with Vertically 

Integrated Liquid (VIL) from merged and gridded 

NEXRAD radar data for the closest five radars 

(KHTX, KGWX, KOHX, KFFC, KBMX) into a 

new product called VILFRD (Equation 1; Fig. 3c) 

which is tracked using K-means clustering in 

w2segmotionll in the Warning Decision Support 

System – integrated information (WDSSII) 

(Lakshmanan et al., 2007).  
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WDSSII w2segmotionll is used to track features 

where VILFRD values are ≥ 20, at increments of 

20.  Any pixel with a value greater than 100 is 

assigned the value of 100. Clusters are built until 

a minimum size or spatial scale threshold is met 

(Table 2) with a maximum overlap approach for 

associating cells from one time step to the next. 

Individual cells at a select time are shown as an 

example in Fig. 3d. Outside of WDSSII, “broken 

tracks” are objectively merged if a WDSSII cell 

begins at t+1 within 15 km of where a previous 

track ended at time t. Time histories are tied 

together for merged cells. 

 

 
 

Fig. 3. a) 5 minute GLM Proxy gridded flash count, b) 
Merged composite reflectivity, c) VILFRD, d) tracked 
clusters, e) The top panel depicts the lightning trend, 
lightning jumps and severe storm reports. Color 
coded lines/symbols indicate hits (green) and false 
alarms/misses (red), using the algorithm defaults 
outlined in Table 2. on x-axis (green=hit, red=miss) 
and lightning jump hits as vertical lines at time of jump 
(green=hit, red=false alarm), bottom: cluster lifetime 
swath with storm reports (green=hit, red=miss) 

 



 

Spatial 

Scale 
~Area (km

2
) 

1 32 

2 65 

3 97 

4 130 

5 162 

6 243 

 

2.4 Lightning Jump Algorithm 

Lightning jumps were objectively identified 

using the 2σ algorithm from Schultz et al. (2009, 

2011).  A flow chart for the lightning jump 

algorithm process is shown in Fig. 4. As defined 

in Schultz et al. (2009, 2011), the algorithm is a 

5 step process.   

1)   The total flash rate from the time period, 

t, is binned into 2 minute time periods, 

and the total flash rate is averaged. 

2)   The time rate of change of the total flash 

rate (DFRDT) is calculated by subtracting 

consecutive bins from each other (i.e., 

bin2-bin1, bin3-bin2,… bint-bint-1).  This 

results in DFRDT values with the units of 

flashes min
-2

. 

3)   Next the 5 previous DFRDT values are 

used to calculate a standard deviation of 

the population.  Twice this standard 

deviation value determines the jump 

threshold.  

4)   If the newest DFRDT time exceeds the 

jump threshold, the minimum spin-up 

time of 14 minutes is reached, and the 

current flash rate exceeds the flash rate 

threshold of 10 flashes min
-1

, a jump has 

occurred. The classification of an 

individual jump ends once DFRDT drops 

below 0 flashes min
-2

. 

5)   This process is repeated every two 

minutes as new total lightning flash rates 

are collected until the storm dissipates. 

 

In the event multiple jumps occur within 6 

minutes of each other, only the first jump 

remains for verification (Table 3). A discussion 

of the LJA’s tunable parameters is included in 

the next section.  

 

2.5 Parameter Sensitivity Testing 

 

Seven parameters (Table 1) have been 

identified for sensitivity testing of the lightning 

jump system. Schultz et al. (2009) tested a 2σ 

and 3σ configuration of the LJA and determined 

that the 2σ version produced more optimal skill 

scores when a 10 flash per minute flash rate 

threshold was implemented  Based on the 

Schultz et al. (2009) findings, the 2σ 

configuration was tested further in Schultz et al. 

(2011). Herein, this study expands upon the 

results of Schultz et al. (2009, 2011) through 

further sensitivity testing of the sigma threshold 

by varying sigma from 0.75 to 2.5 in 0.25σ 

increments (Table 1).  Furthermore, a range of 

flash rate thresholds are tested in order to 

determine the algorithm sensitivity (Table 1).  

The minimum time required for the spin-up of 

the algorithm is 14 minutes (12 minutes to 

calculate the jump threshold, 2 additional 

Table 2. Spatial scale labels with minimum 

area needed to be met to track using WDSSII 

Fig. 4. Flowchart for the process to classify a 
lightning jump 



minutes to determine if a lightning jump has 

occurred; Section 2.4).  

Tunable parameters that are investigated 

within the verification framework are storm 

report distance and forecast period. Severe 

storm reports were obtained from NOAA 

National Climatic Data Center’s (NCDC) Storm 

Data and used as ground truth for validation.   

Storm Data has known issues such as 

time/location displacement and data sparse 

regions (e.g., Williams et al. 1999), so effort is 

taken to mitigate small timing and spatial errors 

that may exist in the database. This mitigation 

includes an additional “buffer” space around the 

footprint of a tracked storm cluster at each time 

step to assign reports to specific clusters. Storm 

report distance is defined as the maximum 

distance from the storm cluster’s footprint edge 

that a storm report can be associated with that 

storm. This distance is initially set to 5 km. The 

forecast period is the time period starting at the 

occurrence of a jump and lasting for 45 minutes 

(default) or set length of time. Reports that occur 

within this forecast period or validation window 

are used to verify the jump. 

Finally, two parameters are used to define 

the available database itself. The domain range 

is limited to the areal coverage of the LMA 

network. The closer the lightning activity is to the 

network, the higher the detection efficiency. 

Therefore, extending the domain can decrease 

the detectable flashes and decrease flash rates 

which can have an effect on the classification of 

jumps. The spatial scale introduced in this study, 

not present in Schultz et al. (2009, 2011), is a 

result of the options available in WDSSII to track 

features at different areal extents. Six different 

scales (Table 2) were chosen ranging in sizes 

from that of small thunderstorms to that of larger 

storm clusters. These values serve as the initial 

or baseline comparisons for sensitivity tests 

performed in this study. 

 

2.6 Verification 

This study’s initial verification methodology 

closely follows the methodology outlined in 

Schultz et al. (2009). In order to evaluate the 

lightning jump system, severe storm reports are 

used as ground truth validation. As mentioned 

above, there are caveats with using Storm Data. 

In attempt to mitigate these effects, a temporal 

clustering of reports in 6 minutes bins was 

implemented. This binning begins at the initial 

point that the storm cluster enters or develops 

within the domain. These grouped reports count 

as single event.  

The forecast period or validation window for 

jump verification is the 45 minute window 

starting at the time of the jump.  However, in the 

method outlined by Schultz et al. (2009), only 

one jump can be evaluated at a given time. As 

mentioned in Section 2.4, jumps are grouped if 

they occur within 6 minutes of each other. This 

leaves open the potential for additional jumps to 

occur within the validation window (after the 6 

minute potential grouping) of a previous jump. In 

these cases, we will differentiate the jumps as 

“first” jump and “second” or subsequent jumps. 

The first jump is verified and a hit (defined as the 

number of storm report groups) if a storm report 

occurs during the validation window. A second 

jump’s validation window, however, is limited to 

the time period following the expiration of the 

first jump’s validation window. For example, if 

the second jump started 30 minutes after the 

first, its validation window would expire 15 

minutes later (considering a 45 minute forecast 

period) leaving a 30 minute validation window 

for the second jump. Despite what reports exist 

within the 15 minute overlap of the two jumps, 

the second jump is classified as a false alarm if 

no reports are present for the remaining 30 

minutes.  

In order to evaluate the algorithm, the skill 

scores of Probability of Detection (POD) and 

False Alarm Ratio (FAR) (Wilks 2011, 310-311) 

were calculated. In the process, a hit is defined 

as the grouped severe storm reports that occur 

during a validation window of a jump with the set 

bounds or buffer around a storm cluster.  A miss 

is defined as the grouped severe storm reports 

that occur outside of a validation window. A false 

alarm is defined as a jump that is not followed by 

any    storm    reports    within   the    associated 

 

 



Table 3. A comparison of verification methodologies between the method used in Schultz et al. (2009, 2011) and a 

method aligning with the National Weather Service. 

Verification 

Methodologies 

Verification 

Schultz et al. 2009, 2011 

Alternative Verification 

(Based on NWS, NWS-HUN 

personal communication) 

Storm report grouping Yes (6 minutes) 
no 

1 storm report verifies 2 

overlapping forecasts 
No (only first forecast, 1 hit) 

Yes (1 hit) 

Jump grouping Yes (6 minutes) 
Yes (6 minutes) 

False alarm 

• No report during forecast OR 

• For overlapping forecasts, no 

report in time period following 

first forecast expiration 

No report during forecast 

 

 

validation window as well as the qualification of 

subsequent jumps described in the previous 

paragraph. 

The Schultz et al. (2009, 2011) verification 

methodology is not equivalent to that of the 

methodology employed by the National Weather 

Service (NWS) storm warning verification (NWS 

2011). The main differences that exists between 

these two is severe storm grouping and the false 

alarm determination for subsequent jumps. 

Unlike Schultz et al. (2009), the NWS validates 

each warning separately even if they overlap. 

However, reports that are in the overlapping 

region only count once in the statistics.  In an 

effort to closer compare our results to the 

techniques used by the NWS, we included what 

we will call an alternative (to Schultz et al. 2009) 

verification method. The discussion of our 

results will use both of these verification 

methods to evaluate the LJA algorithm and 

analyze sensitivity within the tunable parameters 

listed in Table 1. 

 

 

3 RESULTS 

Several trials of the lightning jump system 

using the tunable parameters listed in Table 1 

were evaluated using the skill score metrics of 

POD and FAR. The sensitivity analysis revealed 

the level of influence that some of the tunable 

parameters have on the skill scores. In addition, 

while not surprising, the verification methodology 

notably affected the evaluation of the system 

performance. The main results shown are the 

influence of spatial scale used in storm cluster 

tracking, the effect of sigma and the flash rate 

threshold on the LJA and the impact verification 

methodology has on these results. 

A comparison between the 6 spatial scales 

(Table 2) that were used by WDSSII to track 

storm clusters is shown in Fig. 5 where color 

indicates the difference scales. Larger spatial 

scales lead to increased POD, due to the larger 

areal extent of the storm cluster’s footprint and 

thus limiting exclusion of storm reports located 

on the periphery of the storm, with values 

increasing from a range (due to a variance of 

other parameters) of 0.19 to 0.88 at scale 1 to 

0.44 to 0.97 at scale 6. FAR value ranges 

tighten with increasing spatial scales, from 0.5 to 

0.91 at scale 1 to 0.63 to 0.86 at scale 6. During 

early investigation of spatial scale and tracking, 

it was found that smaller scales were more ideal 

for isolated, small-scale thunderstorms as they 

were easier for the tracker to separate. Larger 

scales worked better for more complex and 



larger storms such as supercells. The larger 

scales were less likely to split a cluster apart that 

would naturally be considered as one entity. 

Based on these early results, and the 

distribution in Fig. 5, scale 5 was used as the 

default scale for further analysis in this study. 

 

Fig. 5. Comparison of the 6 spatial scales (areal 
extent). Color represent the spatial scale at which 
storms are tracked and symbols represent flash rate 
thresholds for the Schultz et al. 2009, 2011 
verification method. 

Ongoing sensitivity analysis on the LJA and 

verification parameters listed in Table 1 showed 

that sigma and flash rate threshold had the 

largest impact on the overall performance of the 

algorithm.  The combined effect of the sigma 

and flash rate thresholds for the Schultz et al. 

(2009) and alternative verification methods are 

shown in Figs. 6 and 7, respectively. The 

Schultz verification methodology (Fig. 6) shows 

that decreasing sigma values (cooler colors) and 

lowering the flash rate threshold (symbols) 

results in the POD increasing slightly more than 

the FAR. The POD and FAR were strongly 

coupled with a correlation coefficient of 0.95. 

Separating the effects of sigma and flash rate as 

sigma decreases, the effect of flash rate become 

more pronounced as linear regression slopes 

(0.57 at 0.75σ to 0.88 at 2.5σ) show a greater 

increase in POD values than in FAR values.  

Analyzing the effect of sigma and flash rate 

threshold on the algorithm using the alternative 

verification (Fig. 7) shows a de-coupled POD-

FAR relationship (R
2
=0.20) with decreasing 

sigma values resulting in an increase POD with 

little change in FAR. In addition, decreasing 

flash rate threshold leads to an increased POD 

but only slightly more than the FAR. Linear 

regression analysis while holding sigma 

constant revealed slopes of 0.99 (at 0.75σ) to 

0.59 (at 2.5σ) quantifying the coupled effect 

flash rate threshold has on the POD-FAR 

relationship at low sigma values and the 

decoupling of this relationship with increasing 

sigma.  

 

Fig. 6. The Schultz verification methodology showing 
the relationship of sigma (color) and flash rate 
threshold (symbols) on the algorithm’s performance at 
spatial scale 5.  A linear regression analysis 
(y=0.52x+0.40) for these data resulted in a strong 
correlation between POD and FAR (R

2
=0.95).  A 

linear regression analysis while holding each sigma 
level constant resulted in R

2
=0.99 and slopes ranging 

from 0.57 (at 0.75σ) to 0.88 (at 2.5σ). 

 Finally, Figure 8 shows the spread of the 

method established in Schultz et al. (2009; 

black) and the alternative verification method 

(red) for all spatial scales. As mentioned, the 

Schultz et al. (2009) verification shows how 

closely coupled the relationship is between POD 

and FAR. The alternative method of verification 

shows improved performance of the LJA system 

on the order of reducing the FAR by 20% while 

maintaining a high POD. This is most likely due 

to the reduced amount of subsequent jumps 

classified as false alarms in Schultz et al.’s 

methodology. 

 



 
 

Fig. 7. The alternative verification method showing the 
relationship of sigma (color) and flash rate threshold 
(symbols) on the algorithm’s performance at spatial 
scale 5. A linear regression analysis (y=0.16x+0.48) 
for these data resulted in almost no correlation 
between POD and FAR (R

2
=0.20).  A linear 

regression analysis while holding each sigma level 
constant resulted in correlation values above 0.9 
(R

2
=0.93 to 0.99) and slopes ranging from 0.99 (at 

0.75σ) to 0.59 (at 2.5σ). 

 

 
Fig. 8. A complete dataset distribution showing the 
differences between the verification Schultz et al. 
(2009; black) and alternative (red) verification 
methodologies. 

 

4 SUMMARY 

Analysis shows that key components of the 

algorithm (flash rate and sigma thresholds) have 

the greatest influence on the performance of the 

algorithm when validating using Storm Data.  

The analysis of the lightning jump system using 

GLM proxy data has shown probability of 

detection (POD) values around 60% with false 

alarm rates (FAR) around 73% using similar 

methodology to Schultz et al. (2011). However, 

when applying verification methods similar to 

those employed by the National Weather 

Service, POD values increase slightly (69%, 

range of 35%-95%) and FAR values decrease 

(63%, range of 0.48%-0.66%). These results 

show the POD and FAR are highly correlated 

(R
2
=0.95) in the Schultz verification but not in 

the alternative verification (R
2
=0.20). This 

evaluation also highlights the sensitivity of the 

algorithm’s evaluation based on verification 

methodologies involving storm reports. 
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