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1.  INTRODUCTION 

Numerical weather prediction (NWP) models have 
been steadily improving since their operational 
implementation over 60 years ago.  At the time statistical 
postprocessing of NWP output was introduced over 40 
years ago, the NWP models had serious deficiencies, 
and much effort went into choosing a set of several, 
typically 10 to 12, predictors that together captured the 
information in the NWP model to produce “down to earth” 
weather forecasts.  This included the production of 
probabilistic guidance forecasts; linear regression 
applied to forecasting events for that purpose was given 
the moniker REEP for Regression Estimation of Event 
Probabilities by Bob Miller (1968).  REEP was easy to 
use, and predictor selection, either forward, backward, or 
stepwise–whatever the developer preferred–from a large 
number of potential predictors, typically over 100, was 
straightforward.  Such postprocessing was especially 
useful because NWP did not at first provide forecasts of 
the elements desired, such as 2-m temperature or 10-m 
wind, and especially probability forecasts. 

 But the situation has changed.  NWP many times 
does provide forecasts of the exact “surface” weather 
elements desired, even though not usually at the specific 
locations desired.  However, conditional biases many 
times exist in NWP forecasts, biases that can be partially 
corrected by postprocessing.  Today, NWP forecasts 
are much more accurate, and the 2-m temperature from a 
model is a very good predictor in some statistical 
postprocessing technique for producing 2-m temperature 
forecasts, so much so that regression equations don’t 
need as many predictors as formerly, and the data 
samples can be smaller because overfitting is a lesser 
problem.  This makes other techniques that don’t have 
an analytic algorithm for arriving at the “best” solution and 
that have to rely on more extensive computer processing 
more attractive. 

 Probabilistic forecasting has been promoted for 
years, but has been slow to catch on.  Some reasons for 
this are given by Glahn (2013).  Nevertheless, quite 
reliable objective probabilistic forecasts are routinely 
available from the National Weather Service (NWS ) for 
several surface weather elements over the United 
States,  including precipitation  amount (Antolik  2000; 
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Charba and Samplatsky 2009a, 2011), snow amount 
(Cosgrove and Sfanos 2004), temperature and dewpoint 
(Glahn et al. 2009), ceiling height and visibility 
(Ghirardelli and Glahn 2010), thunderstorms (Shaffer 
and Gilbert 2008; Charba and Samplatsky 2009b), 
convection (Charba, et al. 2011), and precipitation type 
(Shaffer 2010).  Other countries also have well 
developed postprocessing systems, some of which 
produce probabilistic information (e.g., Wilson and Vallee 
2003).  Other organizations produce probability 
forecasts that may be made available to the public or 
specific customers; for instance the University of 
Washington is active in providing forecasts for the Pacific 
Northwest (e.g., Kleiber et al. 2011). 

 REEP has been used for producing most of the 
centrally implemented postprocessed probabilistic 
forecasts (see references in the previous paragraph).  
When there are multiple events, defined by applying 
thresholds to a quasi-continuous variable such as 
precipitation amount, REEP has two particular 
deficiencies.  First, the forecasts from a REEP equation 
are not limited to the zero-one range.  The usual 
procedure is to truncate the forecasts to that interval.  
This procedure is not pleasing, especially because there 
may be many forecasts of exactly zero or one which 
implies more certainty than warranted.  However, the 
operational impact may not be important because many 
times the forecasts are rounded to 5 or 10% for 
distribution.  The other deficiency is that the regression 
lines for the different categories defined by the thresholds 
may not be parallel when only one predictor is involved, 
or the multidimensional planes may intersect when two or 
more predictors are involved.  This means that the 
forecasts can be inconsistent, especially when several 
predictors are involved.  For instance, the probability of 
snow > 2 inches may be greater than the probability of 
snow > 1 inch.  If this happens, some ad hoc procedure 
must be invoked to make the forecasts consistent.   

 The first deficiency of REEP can be dealt with by 
using logistic regression for which the output is 
constrained to the zero/one interval.  The result is a 
symmetrical curve with one predictor, or a symmetrical 
surface in case of multiple predictors.  However, the 
second deficiency still exists–the forecasts can be 
inconsistent.  To deal with this, Wilks (2009) proposed 
an “extension” where instead of a relationship being 
developed for each predictand category (i.e., event) 
separately, only one equation be produced “. . . by 
including the predictand threshold itself as one of the 
regression predictors.”  The resulting curves do not 
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cross, and the forecasts are therefore consistent.  The 
use of this extension has been reported by Roulin and 
Vannitsem (2012).  This paper discusses the extension 
option, proposes a new alternative, and presents the 
advantages and disadvantages of each. 

 Logistic regression produces a symmetrical curve, 
symmetric on the predictor axis (in the case of a single 
predictor) about the point where the probability of the 
dependent variable is 0.5.  Especially if the predictor 
covers a range of values where the curve asymptotes to 
both zero (from above) or unity (from below), the fit may 
not be particularly good at one or both ends.  For 
instance, if there are many more data points at one end 
than the other, the fit may not be as good where the data 
density is less.  This paper shows how symmetry can be 
avoided by including another predictor in the equation as 
a function of the original predictor, thereby making the 
curve non-symmetrical1.  This possibility has not, to my 
knowledge, been discussed previously in the meteoro-
logical literature. 

 Both the non-symmetry and the consistency of 
forecasts from the logit model are explored here by using 
a dataset for the months of October through March for the 
years 2011-2012 (developmental data) and 2012-2013 
(test data).  The predictand was 12-h amounts of 
precipitation in inches, the units normally used in the 
United States for precipitation measurement and 
forecasting, observed at 24 stations at 0000 UTC in the 
Pacific Northwest (see appendix).  This area was 
chosen because of its relatively high frequency of 
precipitation.  The primary predictor was 12-h 
precipitation amount in mm from the National Centers for 
Environmental Prediction’s (NCEP) Global Forecast 
System (GFS) at the 24-h projection verifying at the same 
time as the observations.  Some use was also made of 
the model-produced relative humidity at 850 hPa as a 
predictor.  

2.  NON-SYMMETRIC LOGIT REGRESSION  

 The logistic equation is simply 
 
             Exp[f(x)] 
 P = -------------------,  
      1 + Exp[f(x)] 
 
where f(x) is a function, usually linear, of the predictor 
variables.  When only one predictor is involved, call it “q” 
for the cube root of model quantitative precipitation 
forecast (qpf), the function is 

 f(x) = a + bq.                                   (1) 

                                                           

1   According to Agresti (2002), the term “logit” was 
introduced by Berkson (1944) although the logistic 
transformation was used earlier by Bartlett (1937).  
Walker and Duncan (1967) note that “Restriction to a 
symmetric curve is not essential.” but do not use the 
approach proposed here. 

The cube root transformation has been found to be a 
better predictor of the observed precipitation than the 
original variable (Sloughter et al. 2007; Bentzien and 
Friederichs 2012), not differing much from the fourth root 
used by Hamill et al. (2004) 2 .  The constant and 
coefficient are usually arrived at by the iterative method 
of maximum likelihood (Wilks 2011, pp. 238-242), an 
analytic solution not being possible. 

A logit equation was developed for each of six 
categories of precipitation amount, > Trace (i.e., 
measurable), > 0.10, > 0.25, > 0.50, > 0.75, and > 1.0 
inches; these are here called categories 1 through 6, 
respectively.  The probabilities for each of these 
categories produced by the six equations are shown in 
Fig. 1 as a function of q (solid lines). 

 The symmetry along the predictor axis for each 
curve is about the point q* where P = 0.5.  The curves 
can be made non-symmetric about this point by including 
a second predictor q' where 

 q' = q - q* 

when q > q*, and zero otherwise.  The resulting equation
  
 f(x) = ans + bnsq + cnsq'                         (2) 
  
produces the curves also shown in Fig. 1 (dotted lines).  
The addition of an additional predictor defined in this way 
is called piecewise linear regression in a linear 
regression setting (Neter and Wasserman 1974, p. 313), 
and provides for a different slope on different sides of the 
breakpoint q*.  For piecewise linear, the breakpoint 
would be at some meaningful value;3 to make the logit 
non-symmetrical, the breakpoint can be anywhere the 
user wants to place it, but would likely be at or near the 
50% point.  If the 50% point is used, it could be 
determined by deriving a one-predictor equation and 
noting the 50% point, which in terms of Eq. (1) is equal to 
–b/a. 

 Fig. 1 also gives the distribution of relative 
frequency of forecast precipitation amount for bins of q 
(solid black line).  There is a large spike at zero, then a 
broad maximum at values between 0.6 and 1.8 
(corresponding to between about 0.2 and 6.0 mm = about 
0.01 to 0.23 inches).  There is a relative frequency of 
precipitation > Trace of 0.045 for the first bin of model 
precipitation which consists of zero amount, each bin 

                                                           

2  The use of the cube root transformation for 
normalization purposes goes at least as far back as 1953 
(Stidd 1953). 
3 Specialized piecewise linear development has been 
applied in fitting climate temperature trends where the 
line is constant up to a point, then angles upward (for 
increasing temperatures with time).  Livezey et al. 
(2007) call this the “hinge” model, the hinge being 
specified at the point in time where many climate records 
indicate an increase in temperature to be starting. 



 3 

representing 0.073 of the transformed forecast 
precipitation.   For this sample of data, the symmetric 
logit curves do not cross in any detrimental way for the 
predictand categories defined within the range of the 
data in the sample.  That is, where the crossing occurs, 
it is so close to zero or unity that it has no practical 
consequence.  If they were to cross, the forecasts from 
them would be inconsistent (e.g., the probability of 0.25 
inches of precipitation being greater than the probability 
o.10 inches).   

 The non-symmetrical curves do not deviate a great 
deal from the corresponding symmetrical ones for the 
first four predictands, the largest departure being for the 
> 0.1 inch category, where the probabilities deviate as 
much as 5% in the mid probability range.  However, the 
fifth category shows a departure for the larger predictor 
values, and the last curve actually turns down and would 
asymptote to zero rather than unity.  This latter result is 
due to the small number of cases at high values of the 
predictor, and the abnormal situation where more model 
forecast precipitation is positively related to lower 
observed amounts.  This shows the care that would 
have to be taken in using a second predictor to produce 
non-symmetry.  It also demonstrates the potential that 
might be helpful in situations where the relationship 
between predictor and predictand is U shaped. 

  For precipitation > Trace, there is no obvious need 
for the curve to be non-symmetrical, and the two curves 
nearly coincide (see Fig. 1).  For the amount > 0.1 
inches, the non-symmetric curve fits a bit better in the 
midrange and also at both the upper and lower ends.  
For amounts > 0.75 in, the relative frequencies 
associated with the higher bins become rather erratic on 
this quite small sample of data,4 and show decreasing 
relative frequencies with increasing model qpf.  For 
amounts > 0.75 and > 1.0 inches (solid squares in Fig. 1), 
the second predictor is likely a detriment, and it produced 
unexpected and unrealistic results.  The data, as 
summarized in the observed relative frequencies of >1.0 
in, do show a downward trend for higher model forecast 
amounts.  For the symmetric case, the low quantitative 
precipitation forecasts and corresponding low observed 
amounts largely determine the curve at higher amounts, 
whereas the non-symmetric curves tend to fit the higher 
amounts. 

 The Brier scores [one half the Score P defined by 
Brier(1950)] for the symmetrical and non-symmetrical 
curves differ little, differing usually in the fourth decimal 
place.  It is noted that maximizing according to the log 
likelihood does not necessarily give the best Brier score, 
but the differences are trivial.  Although the differences 
in Brier scores between the symmetric and 
non-symmetric curves are very small, the non-symmetric 

                                                           

4  It is noted that developers at the Meteorological 
Development Laboratory have characteristically required 
at least two seasons of data for development, but for this 
demonstration, only one season was used. 

fit gave lower (better) scores for the amounts > 0.10 and 
> 0.25 on the 2012-2013 season of independent data. 

 The relative humidity at 850 hPa was added as a 
second predictor to qpf for the symmetric curve, then also 
as a third predictor after qpf and the non-symmetric 
predictor for the non-symmetric case.  The additions in 
reduction of variance (and decreases in Brier score) were 
small, and of the same order as adding the second 
non-symmetric predictor to qpf.  For the second and 
third categories, the non-symmetric predictor was more 
important than adding relative humidity to qpf.  In other 
words, it was more important to make the curve 
non-symmetric than to add the second predictor that was 
individually well related to observed precipitation. 

 Figure 2 shows the reliability on the independent 
sample of both the symmetric and non-symmetric curves 
for the category > 0.10 in, the category where the 
symmetric and non-symmetric solutions were the most 
different (see Fig. 1). (Categories 5 and 6 corresponding 
to the larger amounts were not considered for verification 
because they were obviously too dependent on the small 
number of cases.)  Reliability is somewhat better for the 
non-symmetric fit in the areas where there was a 
difference between the curves, and in the direction 
expected; the symmetrical curve forecast too high 
probabilities in the upper range and too low at P = 0.5, 
whereas the non-symmetrical curve did not exhibit those 
characteristics. 

 This sample of data did not overall demonstrate a 
clear advantage of using a non-symmetrical curve, and 
was meant only to demonstrate the method of producing 
one.  In fact, for the two higher categories, the results 
were clearly not meaningful because of the rarity of 
events above the P = 50% threshold of the symmetrical 
curve (the breakpoint for the non-symmetric predictor 
used here).  For category 2 where there was the most 
difference between the symmetric and non-symmetric 
solutions, the latter was slightly more accurate and 
reliable on the independent data. 

3.  CONSISTENCY OF PROBABILITY FORECASTS 
FOR DIFFERENT CATEGORIES 

 The crossing of lines, in the linear case, or of curves 
in the logistic case for different predictand categories, 
can be a problem, and Wilks (2009; 2011) has proposed 
an “extension” to the logit as a solution.  It consists of 
developing only one equation, essentially repeating the 
sample for each predictand category, but including 
another predictor that represents group membership.  
This has a two-fold advantage.  First, if the predictor 
value representing group membership is some analytic 
function of the predictand, then the single equation can 
be applied to yield the probability of any desired event 
defined by thresholding the quasi-continuous predictand.  
Second, the forecasts will be consistent, as the curves 
will not cross. Also, there would be fewer coefficients to 
fit, although the degrees of freedom saved may be 
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consumed in defining a workable metric for group 
membership.  The regression equation, 

 f(x) = ag + bgq + cgg                            (3) 

is of exactly the same form as Eq. (2), except the second 
predictor “g” is the separation function (a specific value 
for each predictand category).  I call it a separation 
function (or constant for each category) because it just 
separates the curves along the predictor axis.  Because 
cgg in Eq. (3) is a constant for a particular value of the 
predictand, after development, it can be added to the 
overall constant ag to give a unique equation for each 
predictand category. 

 Wilks (2009) calls this “simultaneous” develop-
ment.  I use the term “grouped” development, because 
the term simultaneous development was coined by the 
Techniques Development Laboratory years ago and has 
been used repeatedly (e.g., Dallavalle et al. 1980, pp. 2, 
5; Palko et al. 1985, p. 2; Wilks 2011, p. 266) to describe 
the situation when there is more than one predictand, 
and the same predictors are chosen for all the equations.  
For instance, if one were screening (forward selection) 
predictors and several predictands were involved, the 
process would be simultaneous, but not necessarily 
grouped. 

 When the predictand is the same variable as the 
predictor, quantitative precipitation in this experiment, 
defining the separation constants is trivial–just use the 
same values as the predictand category definitions for 
producing the events for the equation.  However, the 
units need to be considered.  For instance, when using 
the cube root of precipitation amount in millimeters as the 
predictor, the best separation constants may be in those 
terms also.  Actually, any linear transformation of the 
separation constants will give the same result.  That is, 
values of g could be multiplied by and/or added to a 
constant and the same solution would result.  The 
constant and coefficient would be different to compen-
sate for the scaling of g. 

 However, when the predictand and predictor are 
different meteorological variables, the choice of 
separation constants is not obvious, and in actuality the 
relationship between predictor and predictand must be 
considered because the separation constants just shift 
the curves along the predictor axis.  The separation 
constants are in effect providing group membership, and 
by giving them specific values, a metric is imposed (Neter 
and Wasserman 1974, p. 319, discuss this in a linear 
regression framework) that might not be reasonable.  
For good results, the values of the constants are 
necessarily related to the predictor, although they 
indicate predictand group membership.  These are 
essentially values that define group membership in term 
of the predictor.  Actually, it is the differences in value of 
the separation constants that are important.  If there are 
only two categories, the values don’t matter; when the 
separation term cgg is merged into the constant ag the 
same two equations will result no matter the values of g. 

 Figure 3 shows the symmetric logit curves fit 
individually and also those fit by grouping the categories.  
The separation constants for grouped development are 
values of the predictor, scaled in the cube root of 
precipitation amount in mm, at which the predictor 
produces a 50% probability when symmetric curves are 
fit individually.  Specifically, the six values are 1.119, 
1.822, 2.309, 2.789, 3.108, and 3.348.  These values 
are probably about the optimum that can be found.  With 
this imposed metric, the curves fit separately and by 
grouping broadly agree, separating somewhat at the 
higher categories where the individual fitting may not be 
warranted.  This is the easy situation, in which the single 
predictor and predictand are the same variable, although 
as stated earlier, the separation constants should be a 
linear function in the predictor units.  If one converts the 
predictand thresholds to the cube root in mm, the values 
are 0.633, 1.364, 1.852, 2.333, 2.671, and 2.939.  Note 
that the differences between consecutive values in these 
two sets of separation constants are very similar.  
Curves from these separation constants are nearly 
identical (not shown) to those produced from the 50% 
values and shown by dotted curves in Fig. 3. 

 It can be seen that the curves developed by 
grouping are moved along the predictor axis, and the 
separation of the curves is that imposed by the metric.  
For instance, the separation between curves for 
categories one and two is larger than between the curves 
for categories five and six because 1.822 - 1.119 = 0.703 
is larger than 3.348 - 3.108 = 0.240. 

 Figure 4 is similar to Fig. 3 in that it shows the 
curves for individual and grouped development, but with 
non-symmetric curves.  The non-symmetric nature is 
much less noticeable with grouped development.  Of 
importance is that for the grouped development the 
curves for the fifth and sixth categories are now 
meteorologically reasonable, even though the numbers 
of cases are low and the data are not fit well at the high 
end (see Fig. 1 and discussion). 

 Figure 5 shows the symmetric curves developed 
with separation constants derived from the single 
development 50% points as solid lines (the same solid 
curves as shown in Fig. 3) and separation constants 
equal to the category definitions in inches as dotted lines.  
Specifically, the latter separation constants were 0.01, 
0.10, 0.25, 0.50, 0.75, and 1.0.  Note that these 
separation constants were chosen in the same way as 
those discussed above, except that the conversion to 
millimeters and the cube root transformation were not 
made.  The solid lines fit the data rather well, but the 
dotted lines do not.  This demonstrates that the 
separation constants must be chosen with considerable 
care. 

4.  AN ALTERNATIVE FOR GROUPED DEVELOP-
MENT 

 Rather than specifying separation constants, a 
dummy (binary) variable can be provided for each 
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category of the predictand except one that takes the 
value of 1 for group membership and 0 otherwise (Neter 
and Wasserman 1974, p. 309).   Including this predictor 
for every category would render the cross product matrix 
singular.  This does require fitting more coefficients and 
does not have the advantage of being able to obtain a 
probability for any value of the predictand, but it imposes 
no restrictions on the separation of the curves along the 
predictor axis.  It also needs no adjustment if more than 
one predictor is used.  When a metric is imposed in 
grouped development, the predictor-predictand 
relationship needs to be considered.  After selection of 
the first predictor, whether a second one is useful or not 
will depend on the metric, which may not be good for that 
second predictor. 

 Initially, for this alternative and this sample of data, 
the equation contains a constant, a coefficient for the 
cube root qpf predictor, and five coefficients for the five 
binaries.  Because each of the binary terms is a constant 
for its predictand category, its coefficient can be 
combined with the overall constant to form a new 
constant for the corresponding predictand category, 
leaving a two term equation for each category, as can be 
done for the grouped development discussed in the 
previous section.  Figure 6 compares the curves for the 
six categories when the 50% thresholds were used as 
separation constants with those developed by using 
binaries for category membership.  It can be seen that 
there is very little difference, except for the > 1 inch 
category.   The use of binary predictors does not specify 
the amount of separation of the curves and also 
maintains the same slope of each equation to guarantee 
consistency among categories. 

 This formulation does not require any knowledge of 
the relationship between the predictor, in this case the 
cube root of model qpf, and the predictand.  The 
equation developed with 50% separation constants had 
three constants developed, one for the overall constant, 
one for the qpf predictor, and one for the coded 
predictand membership; the reduction of variance was 
0.5804.  The equation developed with category 
membership designated by a binary predictor had seven 
constants developed, one for the overall constant, one 
for the qpf predictor, and one each for the five binaries; 
the reduction of variance was 0.5805, different only in the 
noise level.  Single category development requires 
12 constants be developed, two for each of six 
categories. 

 For this sample of data, the curves were extremely 
similar, the only strong departure was for category 6 for 
which the number of cases was small.  As indicated 
earlier, if the separation constants for the predictand are 
well related to the predictor, little difference is to be 
expected.  However, this would not always be the case 
and additional 0predictors might render the constants 
non-optimal. 

5.  SUMMARY AND CONCLUSIONS 

 I have used a cool season of model forecasts and 
matching observations of 12-h precipitation amounts to 
demonstrate two aspects of logistic regression.  First, I 
have shown how the symmetric logit curve can be made 
non-symmetric, and to possibly fit the data better.  There 
is no a-priori reason the curve should be symmetric.  I 
developed logistic relationships between six categories 
of observed precipitation amount and the cube root of the 
model precipitation amount.  Two of these categories 
showed a somewhat better non-symmetric fit to the data, 
although the resulting reductions of variance were very 
little better than for the symmetric curves; even so, the 
non-symmetric curves were slightly better in terms of 
reduction of error5 on the independent test sample and 
the non-symmetric curve was more reliable for category 2 
(Fig. 2).  The non-symmetric curves for the two larger 
amount categories had unexpected behavior, a result of 
two few cases of the larger amounts to fit that portion of 
the curve acceptably.  Even so, the curve for the larger 
amount shows the potential for the non-symmetric logit 
when the predictand is not a continuously increasing or 
decreasing function of the predictor(s). 

 Second, I have shown that the “extension” that 
Wilks proposed imposes a metric on the predictand, and 
one has to have, or assume, some knowledge of the 
relationship between the predictor and predictand to craft 
a good metric.  If the predictor and predictand are of the 
same variable (e.g., precipitation amount) then the metric 
is straightforward, although any transformations have to 
be considered.  For instance, if the predictor is the cube 
root of precipitation amount in mm, then the predictand 
category membership should be defined in a similar way.  
This extension places the curves along the predictor axis 
relative to each other, and the metric is essentially a 
series of  “separation constants” for the curves.  If the 
relationship between the predictand and predictor is not 
known well, then “50 percent” separation constants can 
be found by developing a separate equation for each 
category, and noting the 50% points–the place along the 
predictor axis where the curve crosses P = 50%.  These 
values are possibly the best that can be obtained to 
define group membership in the extended mode.  
However, this does not necessarily define a “function” 
that could be used to evaluate the expanded equation for 
any specific predictand category, except those used in 
the development–one of the two reasons for the grouped 
development.  

 An alternate option for using the grouped 
development method is to define a binary predictor for 
each predictand category except one to denote group 

                                                           

5  Reduction of error is a term introduced by Lorenz 
(1959, p 84), and is the same as the reduction of variance 
except the mean square error is around the dependent 
sample mean rather than around the test sample mean.  
This compares the error of the forecast with the mean 
forecast that could have been made for the test sample. 
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membership.  This alternative requires no knowledge of 
predictor-predictand relationship and imposes no 
arbitrary metric on group membership.  Like the 50% 
option, this does not lead to an equation that can be used 
for any specific category.  However, the curves for the 
categories are consistent, and by defining several 
categories the specific values defined may be sufficient 
for an operational product; any finer definition could be 
adequately handled by interpolation. 

 Reductions of variance on the developmental data 
and reductions of error on the year of test data are so 
close for the different formulations that no practical 
difference could be discerned.  The grouped develop-
ment has an advantage over individual development on 
each category, not only because the resulting forecasts 
are consistent, but because each more rare category has 
a relationship, built on all the data in the sample, that is 
reasonable.  It is likely the binary option generalizes to 
more predictors better than the imposition of a metric that 
to some degree needs to be devised with the specific 
predictor(s) and predictand in mind. 
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APPENDIX 

The 24 stations used in the study 

Station Identifier  Name 
 
KAST  Astoria, Ore. 
KAWO  Arlington Airport, Wash. 
KBFI   Boeing Field, Wash. 
KBLI   Bellingham, Wash. 
KCLM  Fort Angeles, Wash. 
KEUG  Eugene, Ore. 
KFHR  Friday Harbor, Wash. 
KHIO   Hillsboro/Portland, Ore. 
KHQM  Hoquiam, Wash. 
KMMV  McMinnville, Ore. 
KOLM  Olympia, Wash. 
KPAE  Everett, Wash. 
KPDX  Portland, Ore. 
KRNT  Renton, Wash. 
KSEA  Seattle-Tacoma, Wash. 
KSHN  Shelton, Wash. 
KSLE  Salem, Ore. 
KSPB  Scappoose, Ore. 
KTCM  McChord AFB, Wash. 
KTIW   Tacoma, Wash. 
KTTD  Portland/Troutdal, Ore. 
KUAO  Aurora State, Ore. 
KUIL   Quillayute, Wash. 
KVUO  Vancouver, Wash. 
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Figure. 1.  Observed relative frequencies (solid squares) for each of the six categories of qpf in bins 0.073 wide along 
the predictor axis, the cube root of model qpf in mm.  The sample data range from 0 through 3.64 in those units.  The 
solid curves are the symmetric fits and the dotted curves are the non-symmetric fits.  The black line is the forecast 
relative frequency of precipitation (right axis) in the same bins. 
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Figure. 2.  The reliability of the symmetric and non-symmetric logit curves for the category > 0.10 in on the 2012-2013 
season of independent data. 
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Figure 3.  The symmetrical logit fits to the six categories of observed precipitation independently derived (solid lines, 
which are the same as in Fig. 1) and derived by grouping categories (dotted lines), as a function of the cube root of the 
model qpf in mm.  The separation constants for grouped development are the 50% points for separate category 
development. 
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Figure 4.  The same as Fig 3, except for non-symmetrical logit fits.  The solid lines are the same as the dotted lines in 
Fig. 1. 
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Figure 5.  The symmetrical logit fits with separation constants defined by individual development 50% points (solid 
curves, the same as dotted lines in Fig. 3), and those representing category definition in inches (dotted lines). 
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Figure. 6.  The symmetrical logit fits with separation constants defined by individual development 50% points (solid 
lines, the same as the dotted lines in Fig. 3), and the fits with binary predictors defining category membership (dotted 
lines). 

 

 


