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1 BACKGROUND 

 
1.1 Overview 
 

Soil moisture is a crucial variable for weather 
prediction because of its influence on evaporation, 
especially during warm-season months.  It is also 
important for drought and flood monitoring prediction, 
and for public health applications.  The NASA Short-
term Prediction Research and Transition (SPoRT) 
Center has implemented a new module in the NASA 
Land Information System (LIS) to assimilate soil 
moisture retrievals from the European Space Agency's 
Soil Moisture and Ocean Salinity (SMOS) satellite.  
SMOS Level 2 retrievals from the Microwave Imaging 
Radiometer using Aperture Synthesis (MIRAS) 
instrument are assimilated into the Noah LSM within LIS 
via an Ensemble Kalman Filter. The retrievals have a 
target volumetric accuracy of 4% at a resolution of 35-50 
km.  Parallel runs with and without SMOS assimilation 
are performed with precipitation forcing from 
intentionally degraded observations, and then validated 
against a model run using the best available 
precipitation data, as well as against selected station 
observations.  The goal is to demonstrate how SMOS 
data assimilation can improve modeled soil states in the 
absence of dense rain gauge and radar networks.  
Preliminary results are dominated by biases between 
the retrievals and the model background, but the 
assimilation successfully adds soil moisture in areas of 
strong signal (large precipitation).   

 
1.2 The Land Information System 

 
The NASA Land Information System (LIS, Kumar et 

al. 2006) is a modeling framework for running land 
surface models.  To facilitate intercomparisons, users 
may select land surface models, forcing data sources, 
landcover and soil type data sources, and many other 
parameters. SPoRT uses LIS to produce real-time soil 
moisture products for situational awareness and local 
numerical weather prediction over CONUS, 
Mesoamerica, and East Africa (Case and White 2014; 
Case et al. 2014).  Model output can be used to monitor 
and predict several phenomena including drought, fire, 
extreme heat, flooding, convective initiation, and water-
borne diseases. 

 
1.3 SMOS and SMAP 
 

SPoRT is testing the assimilation of L-band (1.4 
GHz) satellite soil moisture retrievals within LIS to 
improve modeled soil moisture and other output fields.  

Measurements at the L-band are more sensitive to 
surface soil moisture, and perform better in heavy 
vegetation, compared to previous (higher frequency) 
instruments.  The work focuses on two satellite 
missions.  The first is SMOS, launched in 2009, which 
carries the MIRAS radiometer.  The second, upcoming 
mission is NASA's Soil Moisture Active/Passive (SMAP) 
mission (Entekhabi et al. 2010), scheduled for launch in 
late 2014, which will have a radiometer and also an L-
band radar. The SMAP mission will produce products 
separately from both the radiometer (higher accuracy) 
and the radar (higher spatial resolution) as well as a 
combined product.  Some parameters from these two 
missions are given in Table 1. 

We are currently assimilating SMOS soil moisture 
retrievals.  Experience from this work assimilation will 
facilitate the rapid implementation of SMAP data 
assimilation after SMAP is launched.  We are members 
of the SMAP Early Adopters team (Brown et al. 2013) 
which will have early access to experimental data.   

 

 
Table 1.  SMOS and SMAP characteristics. 

 
2 SMOS ASSIMILATION IN LIS 
 
2.1 Description 

 
We assimilate AMSR-E soil moisture observations 

into the Noah 3.2 land surface model (Ek et al. 2003) 
within LIS (release 6.1) using an Ensemble Kalman 
Filter (EnKF).   Kalman filtering is a data assimilation 
method that combines a forecast (background) with 
observations to generate an improved estimate of a 
model variable.  A Kalman Filter calculates an optimal 
weighting between the background and the observation.  
The EnKF uses the spread of the ensemble to represent 
the forecast error covariance.  

Taking advantage of the modular structure of LIS, 
we added a module to LIS to read SMOS Level 2 Soil 
Moisture User Data Product (SMUDP) files provided by 
ECMWF.  Data are screened for radio frequency 
interference, frozen soil, snowcover, falling precipitation, 
heavy vegetation, and data quality flags.    



2.2 Test Case 
 
For a test case, we chose Tropical Cyclone Andrea 

in June 2013, shown in Figure 1.  Before landfall, there 
was significant precipitation in Florida and Georgia 
associated with outlying rain bands.  The EnKF runs 

 

 
Figure 1.  GOES IR image.  Courtesy of Naval 
Research Laboratory, Monterey, CA. 
 

 
Figure 2.  Thirty-six hour accumulated precipitation from 
GDAS forcing data 

assimilated data at 0:00 and 12:00 UTC on 5 Jun 2013, 
with all observations occurring within 3 hours of the 
assimilation time or less.  Results presented herein are 
from the 12:00 UTC assimilation step. The GDAS-
analyzed accumulated precipitation for the 36 hours 
preceding the analysis time is shown in Figure 2, with a 
maximum occurring in southeastern Georgia. 
 
2.3 Experiment Setup 

 
Simulations of this event with and without data 

assimilation were run in LIS using the Noah 3.2 land 
surface model on an 80x92 grid over eastern North 
America at 25-km resolution.  Each experiment run had 
an 8-month spinup prior to the assimilation.  This is 
probably not sufficient to initialize the deep soil layers 
but it should be enough time to initialize the modeled 
soil moisture in the top few centimeters.  This spinup 
period also serves to generate ensemble spread, a 
necessary component for the EnKF, from the 
perturbations.  We used an ensemble with 16 members 
generated using perturbations of 3 forcing variables 
(incident longwave and shortwave radiation, and 
rainfall), 4 state variables (4 layers of soil moisture), and 
1 observation variable (SMOS soil moisture).  
Perturbations were applied based on the AMSR-E test 
case values in the LIS distribution. 

The Noah model was run with a 30-minute timestep 
and configured with the University of Maryland 
landcover database (Hansen et al. 2000) and the FAO 
soil database (FAO-UNESCO, 1977).  It was driven with 
forcing data (temperature, humidity, winds, and incident 
radiation at the surface) from the Global Data 
Assimilation System (GDAS; Derber et al. 1991).    

 

 
Table 2.  Data assimilation experiment setup. 

 
Validation of soil moisture assimilation can be 

challenging, particularly when using in situ 
measurements as ground truth, due to sampling issues 
and biases.  Therefore we chose an artificial setup for 
an initial test of our methodology.  We assimilated 
SMOS observations into two LIS simulations with 
intentionally degraded precipitation forcing (0.5 and 1.5 
times the analysis values).  We also performed two 
control (open loop) simulations, run in ensemble mode 
with perturbations but no assimilation.  Setttings for 
these runs are summarized in Table 2. The results were 
compared to a run with no assimilation and the 
unaltered GDAS forcing.  This is considered the "truth" 
run for verification purposes, but of course there are



Figure 3.  Dry case input and results.  a) Background soil moisture (cm3/cm3) at 5 Jun 2013 UTC 12:00 before 
assimilation step. b) SMOS level 2 retrieved surface soil moisture (observations).  c) Innovations (observations minus 
background).  d) Model increment.  e) Analysis after assimilation.  f) "Truth" field with best forcing data.  g) Error 
reduction (compared to background).    h) Error reduction (compared to open loop run). 

 
Figure 4.  As figure 3, but for wet case.



errors in both the SMOS retrievals and the GDAS 
precipitation analyses so they should not be expected 
to agree completely.  Nevertheless, we assume the 
errors in the "truth" run are small compared to the 
other runs with intentionally degraded forcing. 
 
2.4 Results 
 

Results from this experiment are shown in 
Figures 3 and 4 for the dry and wet simulations (+/- 
50% GDAS precipitation forcing), respectively.  
Figures 3a and 4a show the initial (pre-assimilation) 
soil moisture content of the top (0-10 cm) model layer 
at 12:00 UTC on 5 Jun 2013.  The values of the soil 
moisture retrievals that are assimilated (after quality 
control) are shown in Figures 3b and 4b.  The next 
panels, Figures 3c and 4c, show the innovations, i.e. 
the observations, or retrievals, minus the model 
background.  (Here we are making the assumption 
that the retrieved soil moisture, which is roughly from 
the top 2.5 cm, is equivalent to the 0-10 cm modeled 
soil moisture).  Figures 3d and 4d depict the model 
increment that is applied by the data assimilation 
step.  This is directly related to the innovation, but with 
a spatially-varying gain that depends on the ensemble 
spread at each point and the observation uncertainty.  
Figures 3e and 4e show the 0-10 cm soil moisture 
analyses (i.e. values after assimilation). Figures 3f 
and 4f (identical) show the "truth" value from the 
simulation with unmodified GDAS rain forcing.   

 The innovations (3c/4c) reveal a dry bias in the 
observations (relative to the model state), even for the 
"dry" model run, evident in the widespread negative 
values.  In southeastern Georgia and northeastern 
Florida, the observed soil moisture values are high 
enough to overcome this bias.  In the dry case we 
also see positive anomalies in southern Illinois. 

The analysis increments (3d/4d) have a relatively 
weak magnitude compared to the innovations.  The 
strength of the gain, as controlled by the magnitude of 
ensemble perturbations as well as the observation 
uncertainty, will be the subject of future research.  The 
signs of the analysis agree with those of the 
innovation, as expected. The largest increments are in 
southeastern Georgia/northeastern Florida where the 
signal in the observations is strong enough to 
overcome the bias.  This area shows increased 
moisture in the analyses (3e/4e), which is the desired 
outcome.  In other areas, the changes are relatively 
small. 

Panels g and h of Figures 3 and 4 show metrics 
calculated to perform a quantitative validation.  
Figures 3g and 4g show the error reduction due to a 
single data assimilation cycle, computed as  

 

 
 

Areas shaded in green have a reduced absolute error 
(the analysis is closer to the "truth" than the 
background is).  The bias dominates this analysis but 
where the signal is strongest, we do see an error 
reduction in the dry case. 

Panels 3h and 4h are similar to 3g/4g, but the 
metric is calculated 12 hours later, at 0:00 UTC on 6 
Jun 2013.  This shows the impact of two assimilation 
cycles 12 hours apart.  This metric still shows 
negative impact at most locations, due in part to the 
large model-observation bias, but the area with 
positive impact has increased.  This suggests that 
perhaps that assimilating observations at multiple 
times may be having a positive impact. 

The appearance of positive analysis increments 
where the precipitation signal was strongest is 
indicative that the assimilation cycle is running 
properly.  However, it is clear that the model-
observation biases are quite significant and need to 
be dealt with.   

 
3 FUTURE IMPROVEMENTS 
 

After speaking with several colleagues, we plan 
to apply a bias correction to the observations using a 
CDF-matching technique (Reichle and Koster 2004) 
with a separate curve matching applied for each 
broad land cover category (Blankenship and Crosson 
2011).  The assimilation will be tested in a cycling run 
over an extended period of time.  We will perform 
validation in a less-vegetated region such as the 
Great Plains, where the soil moisture signal is 
strongest.  This will enable us to use the Oklahoma 
Mesonet (Brock et al. 1995) for validation as well.  
Other improvements will include optimizing the 
ensemble perturbations to achieve a spread that is 
representative of the estimated model error, and 
determining the optimal observation uncertainty.  We 
will test this methodology in a smaller, higher-
resolution domain in order to assess its impact on 
various applications.  Finally, we will implement this 
methodology with the simulated SMAP data that has 
been provided to SMAP Early Adopters, to prepare for 
the launch of SMAP. 
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