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1.  Introduction 

 
 Many studies in the past decade have used a 
neighborhood approach, which considers an area of 
grid points around an individual grid point in order to 
better account for uncertainty (Theis et al. 2005; Ebert 
2008; Roberts and Lean 2008; Ajevek et al. 2009; 
Ebert 2009; Gilleand et al. 2009; Schwartz et al. 2010; 
Ruiz et al. 2011; Schaffer et al. 2011; Johnson and 
Wang 2012; Bouellegue et al. 2013; Kochasic 2013). 
While some studies use a neighborhood approach to 
verify forecasts, others use a neighborhood to 
produce forecasts.  
 Schaffer et al. (2011) applied a post-processing 
technique (originally proposed by Gallus and Segal 
[2004]) in the form of a two-parameter neighborhood 
approach to create a probability of precipitation (POP) 
from a gridded area of quantitative precipitation 
forecasts (QPFs). They showed that the resultant 
POPs were more skillful than the POPs of more 
traditional forecasting approaches.  This two-
parameter neighborhood approach was further tested 
by Kochasic (2013), who also showed that this two-
parameter neighborhood approach could outperform 
more traditional methods of forecasting POPs despite 
its relatively simple nature. 
 The goal of this study is to test this two-
parameter neighborhood approach over a National 
Weather Service County Warning Area (CWA) and 
compare its POP forecasts to those of the more 
sophisticated Model Output Statistics (MOS). Brier 
scores, bias values, and Relative Operating Curve 
(ROC) areas will be calculated for each approach's 
forecasts in order to judge their performance. 
 
2.  Methodology 

 
 The neighborhood forecasting approach in this 
study uses a single POP lookup table, created 
through the methodology originally described in 
Schaffer et al. (2011).  Based on the findings of 
Schaffer et al. (2011), an 11x11 grid point 
neighborhood was used with a grid spacing of 20 km.  
To make the POP table, QPFs from the 2007 and 
2008 Hazardous Weather Testbed Spring Experiment 
datasets (Kong et al. 2007; Xue et al. 2008) were 
verified against NCEP Stage IV precipitation 
estimates (Baldwin and Mitchell 1997) while 
considering two parameters: the average precipitation 
amount (assigned to one of seven QPF bins) within a  
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neighborhood, and the number of points within this 
neighborhood with a QPF greater than or equal to 
0.01 inch.  For each possible combination of these 
two parameters, the correct alarm ratio was 
calculated, and these ratios collectively became 
POPs in the lookup table.  The correct alarm ratio can 
be defined as h/f, where f is the number of 
neighborhoods with a particular combination of the 
two parameters, and h is a subset of neighborhoods 
in f that had precipitation observed at the center point 
of the neighborhood.
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 For example, consider QPFs in a theoretical 3x3 
grid point neighborhood (Fig. 1).  In this 
neighborhood, six of the nine grid points have QPFs 
greater than or equal to 0.01 inch, and the average 
QPF in the neighborhood is between 0.05 inch and 
0.10 inch.  When considering all days and time 
periods within a data set, there will be a number of 
neighborhoods with the same two-parameter 
combination, and of that number, a fraction will have 
precipitation reported at the center grid point.  This 
ratio can be expressed as a POP through the correct 
alarm ratio.  For instance, if 5976 neighborhoods had 
an average QPF between 0.05 inch and 0.10 inch 
while six of the nine points had QPFs greater than or 
equal to 0.01 inch, and 2566 of these neighborhoods 
had precipitation observed at their center points, the 
correct alarm ratio would be 2566/5976=42.9%.  This 
POP would be one of many within the POP table 
created by considering all possible combinations of 
the two parameters.  Table 1 is an example of such a 
POP table, including the above POP.  Note that the 
POP table for the 11x11 grid point neighborhood 
tested in this study would be much larger, because 
the neighborhood would contain 121 grid points 
instead of the 9 used in this example, increasing the 
number of rows.   
 Unlike Schaffer et al. (2011), 12-hour time 
periods were used in this study, rather than 6-hour 
time periods.  This change was made because the 
National Weather Service verifies 12-hour POPs.  
Also, because the approach would be tested over 
gridded QPFs from April 2012 to April 2013, both the 
2007 and 2008 Hazardous Weather Testbed Spring 
Experiment datasets were used to train the POP 
table.  In Schaffer et al. (2011), only the 2008 dataset 
was used to train the neighborhood approach, so it 
could be tested against the 2007 dataset. 
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table, the correct alarm ratio is the number of hits 
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 The Spring Experiments in 2007 and 2008 used 
ten-member ensembles, so the POP tables for each 
of the ten members were averaged together, similar 
to what was done in the final approach tested in 
Schaffer et al. (2011). This approach was shown to 
produce a more skillful POP than those of the 
individual members.   
 Four locations within the Goodland Weather 
Forecast Office (WFO) CWA were chosen for testing: 
Goodland, KS (GLD), Burlington, CO (ITR), Hill City, 
KS (HLC), and McCook, NE (MCK). These sites were 
chosen based on availability of ASOS precipitation 
observations, which were used for verification of the 
POPs.  At each of the four sites, the neighborhood 
approach (abbreviated NBH) was applied to gridded 
QPFs from the GFS, NAM, SREF, and GFS MOS 
Guidance. The average of these four POPs was 
verified and compared to the POPs of NAM MOS 
(MET) and GFS MOS (MEX). 
 
3.  Results 

 
3.1  Brier scores 

 
 Brier scores had a tendency to worsen 
(increase) most quickly for MET and least quickly for 
MEX, with the rate of increase for the neighborhood 
approach (abbreviated NBH hereafter) generally in 
between the two (Fig. 2). Considering forecasts 
through 60 hours, NBH had a lower (better) Brier 
score than MET and/or MEX for just over half of the 
time periods considered (11 out of 20 periods).  For 
these forecasts through 2.5 days, NBH was 
competitive at Goodland, Burlington, and McCook, but 
performed worse than MOS for all time periods at Hill 
City. When considering forecasts past 60 hours (NBH 
and MEX), MEX outperforms NBH for all but 3 time 
periods. NBH's good performance for early time 
periods and poor performance for the later periods 
may be a consequence of how the NBH was trained. 
The Spring Experiments only had data through 30 
hours, and this absence of training data past 30 hours 
could have caused NBH's POPs to be better suited 
for short term, rather than long term, forecasts.  This 
could be tested and possibly remedied by training on 
a longer duration data set, and also by creating time-
specific POP tables. 
 
3.2  Bias values 
 
 Like the Brier scores, NBH had better Bias 
values than MET and/or MEX for just over half of the 
time periods considered prior to 60 hours (12 out of 
20 periods). Unlike the Brier scores, however, bias 
values were almost always better for NBH compared 
to MEX for forecasts past 60 hours (Fig. 3). Of these 
latter 20 time periods, 18 time periods had NBH bias 
values that were closer to 1.00 (the ideal bias value) 
when compared to the MEX bias values, suggesting 
that NBH's overestimates better compensated for 
underestimates relative to MOS.  With better NBH 
biases past 60 hours, but worse Brier scores, we 

have evidence to say that forecast errors for NBH 
may be more varied than those of MEX. More 
specifically, these bias values indicate that MEX is 
more likely than NBH to overestimate chances for 
precipitation, though considering the associated Brier 
scores, those accumulated errors are less than those 
of NBH. 
 
3.3  ROC areas 
 
 ROC areas for MEX were almost always better 
than those of MET and NBH, showing that MEX is 
doing a better job than MET and NBH when 
discerning different forecast scenarios. Comparing 
MET and NBH (Fig. 4), NBH had a better (higher) 
ROC area for 13 of the 20 time periods. NBH tended 
to provide better ROC areas for the latter time 
periods, with MET tending to do better for the earlier 
periods. While NBH had better ROC areas for all 
periods at Hill City, KS, of the remaining 8 periods 
where NBH was doing better, 7 of the 8 occurred with 
forecasts after 24 hours. 
 
4. Conclusion 

 
 Brier scores, bias values, and ROC areas were 
computed for four locations over the WFO Goodland 
forecast area for a neighborhood forecasting 
approach, MET, and MEX. The neighborhood 
approach was found to be competitive with the MET 
and MEX, often providing a more skillful forecast than 
at least one of the two. The neighborhood approach 
showed a competitive Brier score for over half of the 
time periods prior to 60 hours, though it did not do as 
well as MEX after 60 hours. On the other hand, bias 
values past 60 hours were almost always better for 
NBH compared to MEX, and bias values for the 
neighborhood approach were also competitive with 
MEX and MET prior to 60 hours. Finally, the 
neighborhood approach yielded a better ROC area 
over half of the time compared to the MET. 
 The analysis of Brier scores with time suggests 
that training the approach on later forecast periods 
could improve the approach's performance. Instead of 
using a single POP table, POP tables could be 
created for each 12-hour period in an attempt to 
provide a more skillful forecast.  With this in mind, 
more sophisticated applications of a neighborhood 
approach to forecasting may provide POPs even 
more competitive with the commonly used MOS 
POPs. 
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Figure 1.  An example of QPFs distributed across a 3x3 grid point neighborhood. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1.  An example of a POP table for a 3x3 grid point neighborhood.  Each column represents a neighborhood 

average QPF (assigned to one of seven bins), and the rows indicate the number of grid points in the neighborhood 

with QPF >= 0.01 inch. 

 
<0.01 0.01-0.05 0.05-0.10 0.10-0.25 0.25-0.50 0.50-1.0 >1.0 

0 7.0 - - - - - - 

1 23.5 30.7 21.1 0.0 - - - 

2 26.0 31.6 30.0 31.0 - - - 

3 26.5 33.3 38.7 36.7 38.9 0.0 - 

4 23.9 33.7 38.7 42.9 44.7 66.7 - 

5 25.5 34.4 42.5 44.4 49.0 50.0 100.0 

6 22.2 36.4 42.9 48.2 50.0 54.4 66.7 

7 - 38.6 45.6 48.6 53.5 52.7 63.6 

8 - 38.9 48.8 51.2 57.0 58.3 55.4 

9 - 38.7 51.6 64.4 75.2 78.3 77.5 

 

 



 
 

Figure 2.  Brier scores over time for the four sites. 



 
 

Figure 3.  Bias values over time for the four sites, using the legend in Fig. 2. 

 



 
 

Figure 4.  ROC areas for NBH (red) and MET (blue) for the four sites. 


