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1. INTRODUCTION 

   
   Long-term monthly averages are a traditional means 
of characterizing climatological precipitation variability 
over the course of a rain year. Frequently based on the 
30-year period of record, they serve as monthly 
precipitation ”normals” which are a basis for anomaly 
calculations.   
   Such “normals”, however, are only statistical 
idealizations, and actual individual years’ month-to-
month rainfall patterns invariably depart from mean 
climatology in some fashion.  Inherent climatological 
tendencies may exist, for example, for occasional 
month-to-month clustering of positive or negative 
anomalies, or pronounced wet anomalies for certain 
months being succeeded by below normal ones several 
months later.  These patterns might also be influenced 
by ENSO-type (i.e., “La Nina”, “Neutral”, or “El Nino”).  
Information on such tendencies, to whatever extent they 
are real, would represent a useful complement to the 
more conventional climatological characterizations.   
   To explore these possibilities, the following study 
investigates the existence and relative frequencies of 
month-to-month precipitation anomaly patterns for three 
California localities with lengthy periods of record.  
These are the downtown stations of San Francisco, Los 
Angeles, and San Diego, CA.  The K-means clustering 
analysis methodology integrated with the V-Fold Cross 
Validation Algorithm is applied.  The latter, a “training-
sample” data mining procedure, allows for a more 
objective determination of the optimal number of 
clusters when incorporated into K-Means.  Preliminary 
to the analysis, the raw monthly precipitation data are 
normalized by month, and to create and characterize 
the clusters, two distance methodologies, the Euclidean 
and Squared Euclidean, are utilized with their results 
compared.   The nature of the patterns and their 
frequencies relative to El Nino, Neutral, and La Nina 
ENSO episodes are described and related.   
   Periods of record examined for each station are 1877-
78 through 2012-13 July-June rain years.  San 
Francisco’s and San Diego’s periods of record  extend 
further back to 1849-50 and 1875-76, respectively, Los 
Angeles’ to 1877-78, but for consistency the former two 
stations’ records are shortened to conform to Los 
Angeles’ historical length. 
.  Given the stations’ winter rainfall maximum/summer 
drought character, the calendar period selection  
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includes October-November, December, January, 
February, March, and April-May.  Thus, the analyses 
become clustering exercises in six-dimensional space.  
   The K-Means/V-Fold methodology has been utilized in 
several other climatic-related studies, such as Coastal 
Southern California stations’ diurnal wind patterns in 
summer (Fisk, 2012),  single station (La Guardia, NY) 
24-hour wind patterns for all months of the year (Fisk, 
2013), and California Climatic Division rain year 
anomaly patterns (Fisk, 2013). 
      
2.   THE K-MEANS AND V-FOLD CROSS  
VALIDATION METHODOLOGIES  

 
    The original K-means methodology was introduced by 
Hartigan (1975), and the basic methodology consists of 
assigning observations to a designated number of K 
clusters such that the multivariate means across the 
clusters are as different as possible.  The differences 
can be measured in terms of Euclidean, Squared 
Euclidean, City-Block, and Chebychev statistical 
distances (Nisbet, et. al., 2009).  
   The V-fold cross-validation scheme, as applied to K-
means clustering involves dividing the overall data 
sample into V “folds”, or randomly selected subsamples. 
K-means analyses are then successively applied to the 
observations belonging to the V-1 folds (training 
sample), and the results of the analyses are applied to 
sample V that was not used in estimating the 
parameters (the testing sample) to assess the predictive 
validity or the average distances of the training sample 
arrays from their cluster center centroids.  The 
procedure is repeated for cluster sizes K+1. K+2, …, 
etc., until the incremental improvement in the average 
distances is less than some threshold, at which time the 
“optimal” cluster size is considered attained (Nisbet, et. 
al., 2009).  
   The STATISTICA Data Miner Clustering module was 
utilized to employ this technique.  Normalization (an 
automatic software feature), reduces the data to a 
common scale and lessens the influence of outliers.  
   As the distance threshold can be changed, generation 
of the “optimal” number of clusters is not completely 
automatic.  Nonetheless, the V-fold cross-validation 
algorithm enhances the methodological objectivity of a 
clustering technique like K-means. 
   In this study, the 5 percent default distance 
improvement cutoff threshold is retained in concert with 
the Euclidean (default) and Squared Euclidean distance 
metrics.     
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3.  DATA AND PROCEDURES 
    
   Data for the three stations were secured from various 
online sites, including those of the National Climatic 
Data Center and National Weather Service.  The 
precipitation histories of each station include a number 
of station moves locally, but for the purposes of this 
analysis, the moves are assumed to have negligible 
influence on results’ outcomes.  

   Also, identification of ENSO episodes is a not 
completely objective or definitive process, different 
researchers have composed different lists, and there is 
likely more uncertainty with years further back than 
closer to the present.  For the purpose of this research, 
the lists utilized are those formulated by the NOAA 
Climate Prediction Center. The first covers the years 
1877-2001, the second 1950-2012. Those years that 
overlap (1950-2012) are given the designations 
assigned by the latter.  

   
4. RESULTS 
 
   4.1 -  Downtown San Francisco Results 
         

   Figure 1 is a bar graph depicting mean overall San 
Francisco precipitation figures for the six calendar 
periods under consideration.  Individual period figures 
range from 4.38” for January, to 2.13 for April-May.  
Total average Oct-May precipitation is 20.98”, the 
median 20.32”      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Mean Downtown San Francisco Precipitation 

for October-November, December, January, February, 
March, and April-May calendar periods, 1877-78 to 
2012-13 Period of Record.  
 
      4.1.1- Downtown San Francisco Cluster generation 
                 with Euclidean Distances 

                
   Five clusters were created utilizing the Euclidean 
distance metric, combined with the 5 percent default 
distance improvement cutoff threshold.  Mean statistical 
training errors of the normalized individual observations 
relative to their respective cluster centroids was .349. 
The “optimal” number of clusters in this instance is 
matched by the results of the STATISTICA scree plot in  

Figure 2, which shows an inflection point at cluster 5. 
The Scree plot is used in this manner as a graphical 
device for selecting a “best” number, and in this 
instance the Euclidean Distance Metric /5 percent cutoff 
threshold and Scree “bests” are the same. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Scree Plot of Sequential Cluster Generation 

Cost Statistics for San Francisco Period-to-Period 
Precipitation Anomaly Patterns – Euclidean Distance 
Metric.  
 
   Figures 3 to 7 below are bar graphs of the mean 
monthly precipitation anomalies for each of the five 
clusters, arranged in rank order of importance.  
Annotations within each chart denote the percent 
occurrence of the pattern along with the percentage mix 
of La Nina, Neutral and La Nina episodes among  
cluster memberships.  Overall, La Nina’s, Neutral’s, and 
El Nino’s made up 25%, 46%, and 29%, respectively, of 
the 136 rain years. 
   From inspection of the charts, by far the most frequent 
idealized pattern for Downtown San Francisco 
(incidence: 40.4% - see Figure 3), is one of persistent 
moderate to slight dry anomalies for all six monthly 
periods.  Average collective Oct-May precipitation for 
this cluster is 15.43” for 55 seasons, 26.4% below the 
overall mean (20.98”).  The ENSO mix (23%, 44%, and 
33%) does not depart appreciably from the overall 
makeup; such will be the case for nearly all of the five 
San Francisco Euclidean modes. 
   The second through fourth ranked patterns (Figures 4 
to 6) display single-month highly positive anomalies for 
December, October-November, and March, 
respectively.  Collectively, these made up 48.5% of the 
136 rain seasons.  In both the “Wet December” and 
“Wet October-November” charts, there is a noticeable 
dry anomaly three months downstream from each of the 
“wet” bars, suggestive of a climatological trough to ridge 
progression. 
    Mode 5 (“Wet January/February” – incidence 11.0% ) 
is the only wet pattern involving contiguous months and 
also the only one in which El Nino’s predominate the 
ENSO mix.  Some 47% of the years belonging to this 
cluster are El Nino’s, higher than either the Neutral or La 

 

 



 

 

Nina figures, and much higher than the El Nino 29% 
overall average.  Total mean October-May rainfall for 
this mode (28.28”) is by far the highest of the five, and 
37.4% wetter than the 20.98” overall average. 
   In sum, it appears that the great majority of San 
Francisco month-to-month idealized precipitation 
variability consists either of fairly non-descript near or 
slightly below normal rainfall one month after another, or 
episodes of heavy falls confined to a single month.  
There is, however, an apparent inclination for heavy 
falls to persist in both January and February during 
some El Nino’s.    
   From this it did not appear that there was an all-
encompassing association between San Francisco 
month-to-month precipitation variability and ENSO 
designation, and a Chi-Square test of uniformity of 
cross-tabulation frequencies confirmed this, the null-
hypothesis being rejected only the .669 level (Chi-
square:5.81, degrees of freedom: 8).       
           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3. Monthly Precipitation Anomaly Chart for 

Downtown San Francisco “Consistently Below Normal” 
Pattern- 40.4% Incidence – Euclidean Distance Option    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Monthly Precipitation Anomaly Chart for 

Downtown San Francisco “Wet December” Pattern –  
16.9 % Incidence – Euclidean Distance Option 
 
 
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Monthly Precipitation Anomaly Chart for 

Downtown San Francisco “Wet March” Pattern – 16.2 % 
Incidence  - Euclidean Distance Option  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Monthly Precipitation Anomaly Chart for 

Downtown San Francisco “Wet October_November”  
Pattern- 15.4% Incidence – Euclidean Distance Option   
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Monthly Precipitation Anomaly Chart for 

Downtown San Francisco “Wet January/February”  
Pattern- 11.0% Incidence – Euclidean Distance Option 
    
 

 

 

 

 

 



 

 

    4.1.2- Downtown San Francisco Cluster generation 
              with Squared Euclidean Distances 
 

   The Squared Euclidean Distance Metric is utilized in 
clustering analysis when the goal is to “place 
progressively greater weight on objects that are farther 
apart” [Wikipedia,2013], “ fleshing out”, as it were, 
observations whose distances from others in n-
dimensional space would be otherwise less distinct, and 
in the process promoting the generation of more 
clusters.    
   Six clusters for Downtown San Francisco were 
generated with this option, combined with the 5 percent 
cutoff threshold.  Mean training error was a much 
improved (.130), a little more than a third of that for the 
Euclidean option (.349).  The “optimal” number of 
clusters in this instance was more or less “confirmed” 
again by the STATISTICA Scree plot in Figure 8, 
although in this case, the percentage drop in “cost” 
between clusters 5 and 6 was too pronounced to 
produce a cutoff. The latter did result between clusters 6 
and 7 as the cost of the latter was virtually unchanged 
from the former. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Scree Plot of Sequential Cluster Generation 

Cost Statistics for San Francisco Month-to-Month 
Precipitation Anomaly Patterns – Squared Euclidean 
Distance Metric.  
 
   Figures 9 to14 below are bar graphs of the mean 
monthly precipitation anomalies for each of the six 
patterns, arranged in rank order of prominence.   
Compared to the Euclidean method there is scarcely 
any contrast in their patterns and rank orderings, the 
only change of significance being the addition of a sixth 
cluster, and that only having two members.  
   Again, by far the most frequent pattern for Downtown 
San Francisco (incidence: 40.4% - see Figure 9), is that 
of the persistent moderate to slight negative anomalies 
for all the six monthly periods.  As no membership 
changes resulted, average collective Oct-May 
precipitation for the 55 seasons remained at 15.43”, 
more than 5” inches below average, to go with the same 
ENSO mix displayed: (23%, 44%, and 33%). 

   The second through fourth ranked modes (Figures 10 
to 12), plus the new mode (“Very Wet April/May” – see 
Figure 14) each display single-month highly positive 
anomalies. These comprise 49.3% of the years.  Also, 
the three months’ downstream dry anomaly feature 
seen previously in the Euclidean “Wet December” and 
“Wet October-November” charts is present again 
(Figures 10 and 12, respectively)  
   Mode 5 (Figure 13 - “Wet January/February” – 
incidence 10.3%) is again the only pronounced wet 
pattern involving contiguous months.  In slight contrast 
to the Euclidean method which had El Nino’s being the 
most prominent (47%) relative to Neutrals and La 
Nina’s, the El Nino incidence is slightly reduced here to 
43%, matching the figure for Neutrals.  
   Again, subjectively,  it did not seem that there was an 
overall association between San Francisco month-to-
month precipitation variability and ENSO designation, 
and the Chi-Square test of uniformity established this to 
an even stronger degree, the null-hypothesis being 
rejected at just the .808 level (Chi-square:6.09, degrees 
of freedom: 10)       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Monthly precipitation Anomaly Chart for 

Downtown San Francisco “Consistently Below Normal” 
Pattern- 40.4% Incidence – Squared Euclidean Method   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Monthly precipitation Anomaly Chart for 

Downtown San Francisco “Wet December Pattern” – 
16.9 % Incidence – Squared Euclidean Method 

 

 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Monthly precipitation Anomaly Chart for 

Downtown San Francisco “Wet March Pattern” – 16.2 % 
Incidence  - Squared Euclidean Method   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Monthly precipitation Anomaly Chart for 

Downtown San Francisco “Wet October-November”  
Pattern- 14.7% Incidence  - Squared Euclidean Method     
 

 
Figure 13. Monthly precipitation Anomaly Chart for 

Downtown San Francisco “Wet January/February  
Pattern- 10.3% Incidence  - Squared Euclidean Method  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14. Monthly precipitation Anomaly Chart  for 

Downtown San Francisco “Very Wet April/May” Pattern- 
1.5% Incidence – Squared Euclidean Method.   
 
 
   4.2 -  Downtown Los Angeles Results     
 
   Figure 15 is a bar graph depicting mean overall 
Downtown Los Angeles precipitation figures for the six 
calendar periods.  Compared to San Francisco, Los 
Angeles’ mean October-May rainfall (14.53”) is 31% 
less, and its individual monthly maximum (3.26”) is a 
February one rather than January.  Median Los Angeles 
October-May rainfall (12.73”) is nearly 2” less than the 
mean, indicative of an appreciable positive skewness in 
its136-year statistical distribution. 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15  Mean Downtown Los Angeles Precipitation 

for October-November, December, January, February, 
March, and April-May calendar periods, 1877-78 to 
2012-13 Period of Record.  
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 

 

      4.2.1- Cluster generation with Euclidean Distances 
                
   The Euclidean option produced three clusters for 
Downtown Los Angeles, compared to five for San 
Francisco, but the patterns are more or less similar to 
San Francisco’s, in form if not frequency.  Mean 
statistical cluster centroid training error was .369, 
compared to San Francisco’s .349. The “optimal” 
number of cluster figure was attained at an n=3 cutoff, 
as the cost statistic declined by less than 5 percent to 
n=4 (see Figure 16 Scree Plot below). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16.  Scree Plot of Sequential Cluster Generation 

Cost Statistics for Los Angeles Month-to-Month 
Precipitation Anomaly Patterns – Euclidean Distance 
Metric 
 
   Figures 17 to 19 below are the rank ordered bar 
graphs of the mean monthly precipitation anomalies for 
each of the three clusters.  Annotations within each 
chart are the same as those displayed in the San 
Francisco charts.  To repeat, overall La Nina, Neutral, 
and El Nino incidence was 25%, 46%, and 29%, 
respectively. 
   By far the most frequent idealized Euclidean pattern 
for Downtown Los Angeles (incidence: 66.9% - see 
Figure 17), is one of persistent mostly slight negative 
anomalies for all six monthly periods, essentially a 
repeat of San Francisco’s, but significantly more 
predominant in frequency.  Average collective Oct-May 
precipitation for this cluster is 11.32” for 91 seasons, 
22.1% below the overall mean (14.53”).  The ENSO mix 
(31%, 45%, and 24%) is not markedly different from 
overall climatology.  With the possible exception of 
February, the mean departures in Figure 17 are so 
slight that the values on an individual period basis could 
be considered essentially “near normal”.  It should be 
mentioned that since most median monthly rainfall 
figures for Los Angeles are appreciably less than mean 
amounts, most individual years’ monthly precipitation 
totals are “below normal” (i.e. less than average). 
   Interpretation of this pattern and its high frequency  
leads to the conclusion that most rain seasons (~two-

thirds) in Los Angeles are likely absent of excessive wet 
episodes, allowing, of course, for individual member 
years’ variation.  
    Ranking second (incidence: 20.6%) is the “Wet 
February” pattern (See Figure 18). While February 
stands out with its pronounced mean positive anomaly 
(+5.42”), the mean positive anomalies of January and 
March (slightly greater than 1”, are respectable also, 
considering the relatively low Los Angeles climatological 
mean figures for those months (3.09” and 2.55”) 
respectively.  Mean Los Angeles Oct-May Precipitation 
for this cluster was 21.89”, some 151% of average. 
Inspecting the ENSO mix, there is a decided imbalance 
of frequencies - just 7% of the cluster members were La 
Nina’s (expected: 25%) and 43% El Nino’s (expected: 
29%).  By way of comparison with San Francisco, the 
pronounced February feature of Figure 18 was a 
somewhat less prominent element of the San Francisco 
“wet January/February” chart (Figure 7).  “Wet 
February” is the favored Los Angeles mode for El 
Nino’s, “wet January/February” the favored one for San 
Francisco.  
   The third and last mode (incidence: 12.5% - see 
Figure 19) is “Wet October-November/Dry February”.  
Similar to San Francisco’s “Wet December” pattern in 
Figure 4, the latter lacking, however, the relatively 
pronounced December positive anomaly. It displays the 
three-month trough to ridge “propagation” feature which 
conceivably could be associated with a climatological 
inclination to transition to a dry regime by February.  
   While the Los Angeles “Wet-February” pattern above 
did exhibit a clear indication of non-uniform frequencies 
for El Nino vs. La Nina episodes, a Chi-Square test of 
overall uniformity of the cross-tabulated frequencies for 
the three modes versus the three ENSO designations 
still fell “short” of high significance, rejecting the null 
hypothesis at  the .101 level (Chi-square:7.765, degrees 
of freedom: 4).       
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17. Monthly precipitation Anomaly Chart for 

Downtown Los Angeles “Consistently Below Normal” 
Pattern- 66.9% Incidence – Euclidean Method    
 
 
 

 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18. Monthly precipitation Anomaly Chart for 

Downtown Los Angeles “Wet February” Pattern- 20.6% 
Incidence –  Euclidean Method   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19. Monthly precipitation Anomaly Chart for 

Downtown Los Angeles “Wet February” Pattern- 12.5% 
Incidence – Euclidean Method   
 
 
    4.2.2- Cluster generation with Squared Euclidean 
                 Distances for Downtown Los Angeles 
 
   In contrast with the San Francisco results, which 
produced virtually no Squared Euclidean vs.  Euclidean 
differences in patterns and rankings, save for the 
addition of a minor new cluster for the latter, the Los 
Angeles squared Euclidean method produced    
contrasts in outcomes.  
   Five clusters were generated utilizing the 5 percent 
cutoff threshold.  Mean training error was a much 
improved .121, less than a third of that of the Euclidean 
option (.369).  From the Scree plot in Figure 20, the 
modest falloff in “cost” from n=5 to n=6 resulted in the 
cutoff occurring at the former. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20. Scree Plot of Sequential Cluster Generation 

Cost Statistics for Downtown Los Angeles Month-to-
Month Precipitation Anomaly Patterns – Squared 
Euclidean Distance Metric.  
 
   Figures 21 to 25 below are bar graphs of the mean 
monthly precipitation anomalies for each of the five 
pattern modes, arranged in rank order of importance.   
    Again, the most frequent pattern for Downtown Los 
Angeles (incidence: 44.1%) is the “Persistently Below 
Average” one shown in Figure 21, that with consistently 
negative anomalies for all six periods.  Compared to its 
Euclidean counterpart, the frequency is down (from 
66.9%), but the dry anomalies are slightly more 
substantial, especially for December, January, and 
February.  Average collective Oct-May precipitation is 
reduced to 9.41”, more than 5” inches below average. 
The ENSO mix (27%, 45%, and 28%) differs only 
slightly from Climatology. 
   Ranking second, as before, with some changes in 
configuration, is the “Wet February” pattern (incidence: 
17.6% - see Figure 22).  Four of the six anomalies are 
negligible, and aside from February’s  +5.74” departure, 
only March has an appreciable magnitude (+1.54 – 
60.3% above average”).  This mode probably could 
have named the “wet February/March” pattern without 
any loss of generality.  The disproportionate mix of 
ENSO designation frequencies is again present, only 
8% (expected: 25%) of the members being La Nina’s 
versus 42% (expected: 29%) being El Nino’s.  Mean 
October-May precipitation for the 24 rain years in this 
cluster is 21.55”, or 148% of average.    
   Third in rank is the “Wet January” cluster (incidence: 
14.0% - see Figure 23).  Like “Wet February” most of 
the other period anomalies are slight.  January’s mean 
anomaly is +5.35”, none of the others exceeding 1”.  El 
Nino’s make up 32% of the membership, compared to 
21% for La Nina’s, but this is a relatively modest 
distinction compared to ”Wet February’s” disparity. 
    Tied with “Wet January” in 14.0% frequency is the 
“Wet Oct-Dec, Dry Jan-May mode” ( see Figure 24) so 
called as it consists of positive anomalies for October-
November, & December, succeeded by negatives for 

 

 

 



 

 

each of the remaining periods January, February, 
March, and April-May.  This seems to be a “prototypical” 
La Nina mode, as some 47% of cluster members were 
of this designation, compared to only 16% El Nino’s.  
   Ranking fifth is the “wet-April-May” cluster (incidence 
10.3%, see Figure 25). In addition to the large 2.90” 
positive anomaly for April-May (222% of average), the 
anomalies exhibit a period-to-period positive to negative 
fluctuation.  
   While the “Wet-February” pattern again exhibited a 
decided preponderance of El Nino’s over La Nina’s, and  
the “Wet Oct-Dec, Dry Jan-May” cluster had La Nina’s 
predominating El Nino’s, the Chi-Square test of overall 
frequency uniformity fell “short” again of major 
significance, rejecting the null hypothesis at only the 
.286 level (Chi-square:9.706, degrees of freedom: 8).       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21. Monthly precipitation Anomaly Chart for 

Downtown Los Angeles “Consistently Below Normal” 
Pattern- 44.1% Incidence – Squared Euclidean Method   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 22. Monthly precipitation Anomaly Chart for 

Downtown Los Angeles “Wet February” Pattern- 17.6% 
Incidence – Squared Euclidean Method    
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 23. Monthly precipitation Anomaly Chart for 

Downtown Los Angeles “Wet January” Pattern- 14.0% 
Incidence  - Squared Euclidean Method  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 24. Monthly precipitation Anomaly Chart for 

Downtown Los Angeles “Wet Oct-Dec, Dry Jan-May” 
Pattern- 14.0% Incidence  - Squared Euclidean Method  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 25. Monthly precipitation Anomaly Chart for 

Downtown Los Angeles “Wet Apr-May” Pattern- 10.3% 
Incidence  - Squared Euclidean Method  
 

 

 

 

 

 



 

 

   In sum, similar to San Francisco, period-to-period 
idealized precipitation variability for Los Angeles 
consists of near or slightly below normal rainfall one 
period after another (See Figure 21). Aside from this, 
however, there is a stronger contrast exhibited by the 
Los Angeles data in the preferred timings of heavy rains 
during La Nina and El Nino episodes - La Nina’s having 
a stronger early-season tendency (see  Figure 24), El 
Nino’s a later- season proclivity (See Figures 22 and 
23).    
 
4.3 -  Downtown San Diego Results 
 
   Figure 26 is a bar graph depicting mean overall San 
Diego precipitation figures for the six calendar periods.   
Individual figures range from 1.99” for January and 
February each, to 1.00 for April-May.  Total average 
Oct-May precipitation is 9.85”, 32 % less than Los 
Angeles’s (14.53”) and 53% less than San Francisco’s 
(20.98”).  Median San Diego figure is 9.21”      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 26.  Mean Downtown San Diego Precipitation 

for October-November, December, January, February, 
March, and April-May calendar periods, 1877-78 to 
2012-13 Period of Record.  
 
 
       4.3.1- Downtown San Diego Cluster generation 
                 with Euclidean Distances 
 
   The Euclidean option produced three clusters for 
Downtown San Diego, the same as for Los Angeles, but 
aside from the primary mode, displaying a similar 
persistent relative dryness pattern, they were more 
different than alike.   Mean statistical cluster centroid 
training error was .379, compared to Los Angeles’s  
.369 and San Francisco’s .349. The “optimal” cluster 
number  was attained at an n=3 cutoff, this coinciding 
with a noticeable inflection in the line trace (see Figure 
27 Scree Plot below). 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 27.  Scree Plot of Sequential Cluster Generation 

Cost Statistics for San Diego Month-to-Month 
Precipitation Anomaly Patterns – Euclidean Distance 
Metric 
 
   Figures 28 to 30 below are the rank ordered bar 
graphs of the mean monthly precipitation anomalies for 
each of the three clusters.  Annotations are the same as 
those in the San Francisco and Los Angeles charts. 
Once more, overall La Nina, Neutral, and El Nino 
incidence was 25%, 46%, and 29%, respectively. 
   The primary idealized Downtown San Diego pattern 
(incidence: 55.9% - see Figure 28), like those for San 
Francisco and Los Angeles, is the familiar period-to-
period succession of slightly negative anomalies – the 
San Diego exception being the very slightly positive one 
for January).  Average collective Oct-May precipitation 
is  7.77”, some 2.08” below average, and the ENSO mix  
is 30%, 46%, and 24%.  The remaining two patterns 
display little similarity to Los Angeles’s with contrasting 
configurations.  The “Wet October-December, Dry 
January-March” pattern, ranking second in importance 
(incidence: 24.3% - see Figure 29) shows a wet 
October-November and December, the December 
anomaly being substantial, but with negative departures 
for the others.      
   The third ranked pattern “Wet February-March” 
(incidence: 19.9% - see Figure 30) has its period-to-
period anomaly signs flip-flopped relative to Figure 29,  
exhibiting a very strong El Nino presence.  Some 48% 
of cluster members are El Nino’s compared to just 11% 
La Nina’s.  Mean Oct-May precipitation for this pattern is 
13.93”, more than 4” above average.  While the 
disproportionality of El Nino vs. La Nina frequencies is 
striking,  the Chi-Square test of overall frequency 
uniformity falls “short” again of major significance, 
rejecting the null hypothesis at the .123 level (Chi-
square: 7.256, degrees of freedom: 4)      
 
 
 
 
 
 

 

 



 

 

 
 
 
 
 
 
 
          
 
 
 
 
 
 
 
 
 
Figure 28. Monthly precipitation Anomaly Chart for 

Downtown San Diego “Predominant Slight Dryness”  
Pattern- 55.9% Incidence  - Euclidean Method  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 29.  Monthly precipitation anomaly chart for 

Downtown San Diego “Wet October-December, Dry 
January-March” Pattern – 24.3% Incidence – Euclidean 
Method 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 30.  Monthly precipitation anomaly chart for 

Downtown San Diego “Wet February-March’ Pattern” 
 - 19.9% Incidence – Euclidean Method 
   

     4.3.2- Downtown San Diego Cluster generation with 
              Squared Euclidean  Distances 
    
   Repeating the results for Downtown Los Angeles, the 
Squared Euclidean method generated five clusters for 
Downtown San Diego.  Mean training error was down to 
.136, some 36% of that for the Euclidean set (.379).  
Pattern-wise, significant similarities as well as 
differences were noted between the cluster sets of the 
two stations.  
   The Scree Plot in Figure 31 shows a major inflection 
point at n=5, corresponding again to the cutoff number 
as determined by the 5% reduction methodology.  
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Figure 31.  Scree Plot of Sequential Cluster Generation 

Cost Statistics for San Diego Month-to-Month 
Precipitation Anomaly Patterns – Squared Euclidean 
Method. 
 
   Figures 32 to 36 below are bar graphs of the mean  
precipitation anomalies for each of the five clusters, 
arranged in rank order of importance.   
   Once more, the most frequent pattern for Downtown 
San Diego (incidence: 49.3%) is the “Persistently Below 
Average” one shown in Figure 32, that with consistently 
negative anomalies for all six periods.   
   Relative to its Euclidean counterpart, the frequency is 
down slightly (from 55.9%), but the dry anomalies are 
more pronounced in negative magnitude.  Average 
collective Oct-May precipitation is reduced to 6.98”, 
nearly 3” below average (9.85”).  The ENSO mix (34%, 
41%, and 25%)  shows a slight favoring of La Nina’s 
over El Nino’s (34% to 25%). 
   Ranking second is the “Wet Oct-Dec” pattern 
(incidence: 16.2% -see Figure 33).  This bears some 
resemblance to Los Angeles’ Squared Euclidean 
configuration in Figure 24 (“Wet Oct-Dec, Dry Jan-May” 
cluster), but the Figure 33 anomalies downstream of 
December are not all negative, nor as pronounced when 
they are negative.  Moreover, there is no preponderance 
of La Nina memberships in “Wet Oct-Dec” like there is in 
“Wet Oct-Dec, Dry Jan-May”).  In the former, Neutrals 
are the most frequent, with a 59% membership statistic 
(Figure 33); the latter has 47% La Nina’s (Figure 24). 

 

 

 

 



 

 

    In third place is the “Wet March” pattern (incidence 
14.0% - See Figure 34). The March positive anomaly 
stands out considerably in this chart, most of other 
mean anomalies, both positive and negative, being 
negligible.  An analogous squared Euclidean pattern, 
emphasizing March to the exclusion of other periods is 
not present for Los Angeles. The San Diego “Wet 
March” mode displays a definitive El Nino membership 
preponderance with El Nino’s exceeding La Nina’s 47% 
to 16%, reinforcing the notion of El Nino’s being 
associated with late winter heavy rainfalls in Southern 
California.  Mean Oct-May precipitation is 11.15” 
   Fourth in rank is the “Wet January” pattern (incidence: 
13.2% - see Figure 35), having an identically named Los 
Angeles counterpart cluster represented in Figure 23.  
In the case of San Diego, Neutrals overwhelmingly 
predominate cluster membership (72%).  Mean Oct-May 
precipitation is 12.77”. 
   In fifth place is “Wet Feb-May” (Incidence: 7.4% - See 
Figure 36).  This is somewhat similar to the Los 
Angeles’  “Wet February” pattern (Figure 22), both 
exhibiting late-season positive anomalies encompassing 
multiple periods  (February & March for “Wet February”, 
February & April-May for “Wet Feb-May”), and both 
have strong preponderances of El Nino cluster 
memberships (42% for the former, 70% for the latter). 
Allowing for the small sample size of the San Diego 
“Wet Feb-May” cluster (n=10), mean Oct-May rainfall is 
15.35”, 156 percent of the 136-year average, and by far 
the highest figure for an individual San Diego cluster. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 32. Monthly precipitation Anomaly Chart for 

Downtown San Diego “Consistently Below Normal” 
Pattern- 49.3% Incidence – Squared Euclidean Method   
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
          
 
 
 
 
 
Figure 33. Monthly precipitation Anomaly Chart for 

Downtown San Diego “Wet Oct-Dec”” Pattern- 16.2% 
Incidence – Squared Euclidean Method   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 34. Monthly precipitation Anomaly Chart for 

Downtown San Diego “Consistently Below Normal” 
Pattern- 49.3% Incidence – Squared Euclidean Method   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 35. Monthly precipitation Anomaly Chart for 

Downtown San Diego “Consistently Below Normal” 
Pattern- 49.3% Incidence – Squared Euclidean Method   

 

 

 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 36. Monthly precipitation Anomaly Chart for 

Downtown San Diego “Consistently Below Normal” 
Pattern- 49.3% Incidence – Squared Euclidean Method   
 
   The overwhelmingly non-uniform frequencies of 
Neutral memberships in the “Wet-January” cluster and  
El Nino ones in “Wet February-May” led a null-
hypothesis rejection of Chi-Square test of overall 
frequency uniformity at the .007 level  (Chi-square: 
21.151, degrees of freedom: 8).       
   In conclusion, not unlike San Francisco and Los 
Angeles, most San Diego month-to-month idealized 
precipitation variability consisted of near or slightly 
below normal rainfall one month after another, except 
for January in the Euclidean case (See Figures 32 and 
28, respectively).  For the lesser modes, like Los 
Angeles, San Diego showed more Euclidean vs. 
Squared Euclidean pattern contrasts, but although the 
two stations are only a little more than 100 miles apart,  
there were some individual one-on-one configuration 
contrasts,  The greater tendency for El Nino’s vs. La 
Nina’s to bring heavy late-season rains was expressed 
in both some of the Los Angeles and San Diego charts, 
but the greater proclivity for La Nina’s versus El Nino’s 
to be associated with early season falls was not present 
in the San Diego results.  Perhaps some of the 
discordance could be explained by the relatively low 
sample sizes associated with many of these lesser 
modes (frequently less than 20 in the Squared 
Euclidean cases) and the resulting sampling variability 
effects. 
.    
  4.4 -  Another Application – Combined Downtown Los 
           Angeles and San Diego Results 
 

   Addressing this San Diego/Los Angeles Squared 
Euclidean discordance issue, and demonstrating 
another use of the K-Means/V-Fold methodology in the 
process, the two stations’ data are combined into a 
single set with a squared Euclidean cluster analysis 
performed.  This makes the application one in  
12-dimensional space.  Three clusters were generated, 
showing a .355 mean training error, comparable to the 
that for two stations’ Euclidean option. 

   Figures 37 to 39 show the graphical results.  In 
general, the patterns are much smoother, with both 
stations showing mean anomalies very much alike, 
period-to-period, a more sensible result for two stations 
so close in distance with a known similar climate.  The 
most frequent mode “Consistently Below Average 
(Except Jan.” – See Figure 37) makes up 59.6% of the 
cases.  The Los Angeles departures (both positives and 
negatives) are a bit more pronounced on an individual 
basis than San Diego’s - to be expected as Los Angeles 
in wetter climatologically.  To reiterate, La Nina’s, 
Neutral’s, and El Nino’s made up 25%, 46%, and 29%, 
respectively, of the 136 rain years, and the mix for this 
mode, as indicated by the annotations in Figure 37 is 
27%, 46%, and 27% - scarcely different. 
   The second ranking mode, “Wet Early Season/Dry 
Jan-Mar” (incidence 20.6%- see Figure 38) displays a 
run of positive mean anomalies for Oct-Nov and 
December (both stations), a run of negatives for 
January-March (both stations), and a positive one for 
April-May (both stations).  The mix of ENSO 
designations favors La Nina’s over El Nino’s by 32% to 
21%, but since Neutrals also make up 46%, a suitable 
overall generalization would be that rainfall character for 
both Los Angeles and San Diego tends to progress from 
an early season mean wet regime to a drier one for all 
ENSO designations, slightly more so on a relative basis 
for La Nina’s compared to El Nino’s.  
   The third mode, “Wet February-March” (incidence 
19.9% - see Figure 39) shows highly positive February 
and March anomalies for both stations, those for the 
other periods essentially negligible.  In this “Wet 
February-March” case, the El Nino incidence is much 
higher than La Nina’s (44% to 11%).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 37. Monthly precipitation Anomaly Chart for 

Downtown San Diego “Consistently Below Normal” 
Pattern- 49.3% Incidence – Squared Euclidean Method   
 
 
 
 
 
 
 
 

 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 38. Monthly precipitation Anomaly Chart for 

Downtown San Diego “Consistently Below Normal” 
Pattern- 49.3% Incidence – Squared Euclidean Method   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 39. Monthly precipitation Anomaly Chart for 

Downtown San Diego “Consistently Below Normal” 
Pattern- 49.3% Incidence – Squared Euclidean Method   

5.  SUMMARY AND CONCLUSION 

   Utilizing the K-Means/V-Fold Cross-Validation 
clustering methodology, the foregoing investigated the 
existence and relative frequencies of month-to-month 
precipitation anomaly modes for the San Francisco, Los 
Angeles, and San Diego October-May rain year 
histories, each covering the 1877-78 through 2012-13 
period of record.  Two distance metrics, the Euclidean 
and Squared Euclidean, were applied to create the 
clusters.  Results’ were also examined in relation to 
ENSO designation (“La Nina”, “Neutral”, and “El Nino”).   
   For each of the three stations, and with either method,  
The primary pattern (with one minor exception) was one 
of slightly negative (dry) anomalies for the six periods 
(October-November and April-May combined into one), 
at least in part due to the fact that precipitation series 

are generally skewed to the high values (i.e., the lower 
median values are more  representative central 
tendency statistics than means).  These primary modes 
comprised between 40 to 66% of the cases, and a 
generalization might be made that the percentages 
characterized the frequency of years that were relatively 
without wet precipitation extremes. .          
   For San Francisco, five and six clusters, respectively, 
were generated by the two metrics, with only minor 
pattern distinctions realized between them.  The primary 
mode had a 40% frequency for each method.  The rest 
of the patterns, save for one, reflected single-period 
“spikes” in positive (wet) anomalies, the exception being 
a wet contiguous period (January-February) signal 
which also was the only one clearly associated with El 
Nino’s.  There were also two clusters that showed wet to 
dry anomaly progressions covering three periods’ extent 
(November- December to February, and December to 
March).      
   Los Angeles and San Diego, hundreds of miles to the 
south of San Francisco, and only 120 miles apart 
themselves, had five and three clusters each, 
respectively, generated by the Euclidean and Squared 
Euclidean methods.  The primary mode (again, 
consistently negative anomalies, period-to-period) 
encompassed 67% and 44%, respectively, of the Los 
Angeles cases, 56% and 49%, respectively, of the San 
Diego ones.  For both stations, the lesser modes 
showed more contiguous periods’ positive (wet) 
anomaly successions, along with indication of an El 
Nino late-season heavy precipitation signal, but there 
were also some pattern dissimilarities.  
   Combining the Los Angeles and San Diego histories 
into one data set and performing a Squared Euclidean 
Cluster Analysis resulted in three clusters of quite 
smooth and distinct patterns; the primary mode (60% 
incidence) showing the usual period-to-period slightly 
negative anomalies (January the exception), followed by 
two lesser patterns roughly opposite in character, 
reflecting early vs. later-season presence of contiguous 
period positive anomalies (each about 20% incidence).  
The late-season wet pattern showed a clear inclination 
of El Nino occurrences over La Nina’s, the early-season 
wet mode with a lesser La Nina over El Nino excess.   
    In conclusion, the K-Means/V-Fold methodology 
provided some useful insights into the deeper-level 
climatological period-to-period precipitation variability of 
San Francisco, Los Angeles, and San Diego.  Results 
carried some weight as 136 seasons were analyzed.  
The V-Fold cross-validation algorithm removed some of 
the subjectivity involved in selecting the “right” number 
of K-Means clusters, but the cutoff threshold magnitude 
is still open to user-selection, as is the type of distance 
metric.   
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