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A new method for forecasting turbulence is developed and evaluated using the high resolution 
weather model and in situ turbulence observations from commercial aircraft. The new method is 
an ensemble of various turbulence metrics from multiple time-lagged ensemble forecasts created 
using a sequence of four procedures. These include weather modeling, calculation of turbulence 
metrics, mapping the metrics into a common turbulence-scale, and production of final forecast. 
The new method uses similar methodology as current operational turbulence forecast with three 
improvements. First, it uses a higher resolution (Δx = 3 km) weather model to capture cloud-
resolving scale phenomena. Second, it computes the metrics for multiple forecasts that are 
combined at the same valid time resulting in a time-lagged ensemble of multiple turbulence 
metrics. Finally, it provides both deterministic and probabilistic turbulence forecasts. Results 
show the new forecasts match well with observed radar reflectivity along a surface front as well 
as convectively induced turbulence outside the clouds on research period. Overall performance 
skill of the new turbulence forecast compared with the observed EDR data during the research 
period is superior to any single turbulence metric. The probabilistic turbulence forecast is used in 
an example air traffic management application for creating a wind-optimal route considering 
turbulence information. The wind-optimal route passing through areas of 50% potential for 
moderate-or-greater turbulence and the lateral turbulence avoidance routes starting from three 
different waypoints along the wind-optimal route from Los Angeles international airport to John 
F. Kennedy international airport are calculated using different turbulence forecasts. This example 
shows additional flight time is required to avoid potential turbulence encounters. 

I. Introduction 
 
Previous studies of wind-optimal routes and turbulence impacts to the National Airspace 

System have been conducted separately. This work aims to develop turbulence forecasts that can 
be used to evaluate how turbulence information affects wind-optimal routes. Previous work has 
not explicitly accounted for turbulence when applying to developing those routes though 
researchers have examined how pilots avoid areas of turbulence.   
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To add turbulence information in the development of wind-optimal routes, the Super 
Ensemble-based Aviation Turbulence Guidance (SEATG) was developed. SEATG uses National 
Center for Atmospheric Research (NCAR)’s Graphic Turbulence Guidance (GTG; Sharman et 
al. 2006) methodology to create an ensemble of turbulence metrics that are then combined at the 
same forecast valid time using a time-lagged ensemble of previous forecasts. The use of time-
lagged ensemble forecasts is not currently performed by the GTG but that technique does have 
benefits. 

The following sections describe the background and methodology and procedures for creating 
SEATG forecasts. A comparison of SEATG forecasts with observed radar reflectivity and in situ 
EDR data will be also presented. Finally, as an example of a SEATG application to Air Traffic 
Management (ATM), wind-optimal routes are computed from Los Angeles International Airport 
(LAX) to John F. Kennedy International Airport (JFK) with and without a turbulence forecast. 

II. Background 
 
Several researchers have developed strategies for using wind-optimal routes for air traffic 

management. Ng et al. (2012) developed optimal flight trajectories that minimized flight time 
and fuel burn by computing minimum-time routes in winds on multiple flight levels. Palopo et 
al. (2010) conducted a simulation of wind-optimal routes and the impact on sector loading, 
conflicts, and airport arrival rates using a method developed by Jardin and Bryson (2001). Jardin 
and Bryson (2012) continued their research in this area by computing minimum-time flight 
trajectories using analytical neighboring wind-optimal routing in the presence of a strong jet with 
winds up to 160 knots. Prior research shows pilots seek to avoid areas of turbulence, and the 
impact of those maneuvers to air traffic management has been documented. Krozel et al. (2011) 
studied the maneuvers pilots made when they encountered Clear Air Turbulence (CAT). They 
showed the pilot’s response to CAT depended on factors such as aircraft type and company 
policies. In that study, they looked at turbulence maneuvers for the next 50 miles of flight and 
found descending to be the quickest tactical solution. Ignoring CAT near a jet of strong winds to 
achieve minimum-time routes may result in flight and fuel savings that cannot be fully realized 
due to a pilot’s unwillingness to traverse a turbulent area to reach the area of maximum tail-
wind. Research shows two-thirds of all severe CAT occurs near the jet stream (e.g., Lester 1994). 
Turbulence information can also aid in the development of routes around convective systems. Ng 
et al. (2009) calculated convective weather avoidance routes considering the probability of pilot 
deviation using a model based on radar data. The model used by Ng et al. (2009) and others to 
predict pilot behavior around convective systems, the Convective Weather Avoidance Model 
(CWAM), uses ground-based radar information to determine areas of convection where pilots 
will likely avoid (Delaura and Evans 2006). Such a model can miss regions of Convectively 
Induced Turbulence (CIT) outside the convective clouds. CWAM is currently used by NASA’s 
Dynamic Weather Routing tool to create in-flight routing around convective weather and has 
been evaluated in field studies in collaboration with American Airlines (McNally et al. 2012).   

To address the lack of turbulence information in those applications, SEATG extends current 
turbulence forecasting techniques by using time-lagged ensembles which has been shown to have 
some benefits. Steiner et al. (2010) completed a review of ensemble-based forecasting and state 
that ensemble forecasting can be applied to turbulence. They also state probabilistic forecasts are 
appropriate for strategic planning as they may provide guidance about the uncertainty associated 
with weather. In addition to using time-lagged ensemble forecasts for turbulence, SEATG also 
differs from GTG as it is based on a higher resolution numerical weather model. In addition, 
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SEATG creates both probabilistic and deterministic turbulence forecasts using several turbulence 
metrics based on the energy associated with turbulent eddies. These eddies result in bumpiness in 
flight for aircraft as they cascade down from larger scale disturbances into smaller spatial scales. 
SEATG forecasts these turbulence scales that are captured by the Eddy Dissipation Rate (EDR) 
which is defined as ε1/3 (m2/3 s-1) and is an aircraft-independent atmospheric turbulence that can 
be mapped to aircraft turbulence. This forecasted EDR value is consistent with the observed in 
situ EDR metric, developed by NCAR, which has been deployed in several fleets of commercial 
airliners like B757s and B737s as an aircraft-independent atmospheric turbulence measurement 
(Cornman et al. 1995). The in situ EDR metric can be related to “light”, “moderate”, and 
“severe” aircraft turbulence and is the standard atmospheric turbulence unit required by the 
International Civil Aviation Organization (ICAO 2001) for routine turbulence reporting.  

III. Methodology and Procedures of the SEATG Model 
 

From a meteorological perspective, small-scale turbulent eddies that directly affect 
commercial aircraft at cruising altitudes are generated by a number of possible sources. For 
example, strong vertical shear above and below a jet stream core, inertial instability due to 
anticyclonic shear and curvature flow, and the gravity wave emissions via geostrophic 
adjustment in the jet stream exit region are well-known turbulence generation mechanisms near 
an upper-level jet/frontal system (e.g., Kim and Chun 2011). Mountain wave breaking frequently 
causes aviation turbulence over complex topographic regions (e.g., Sharman et al. 2012). Flow 
deformation, gravity wave breaking, and thermal-shear instability near the various convective 
systems are also considerable sources for aviation turbulence (e.g., Lane et al. 2012). To take 
into account several turbulence mechanisms and uncertainties in a turbulence forecast, a 
combination of several turbulence metrics due to different mechanisms and from different 
forecasts is essential, and is more reliable than using a single diagnostic or simple rule-of-thumb 
predictor (e.g., Kim et al. 2011). In addition, a high-resolution model uniformly covering a study 
area is more useful to forecast small-scale turbulence from an operational perspective. 
 

 
Fig. 1. Schematic chart of SEATG procedure. 
 

SEATG is a sequence of four different processes as shown in the schematic chart in Fig. 1. 
The steps are summarized below followed with more detail. 

 
1) A high-resolution weather model produces 3-dimensional meteorological data such as u, v, 

and w wind components, potential temperature (θ), pressure (p), humidity, and cloud 
mixing ratios at the given valid time.  
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2) Ten aviation turbulence metrics for different turbulence generation mechanisms are 
calculated using meteorological data from the weather model.  

3) The ten metrics from different time-lagged forecasts are mapped into a common 
atmospheric turbulence-scale (EDR-scale) based on log-normal (random) distribution 
theory of turbulence.  

4) All EDR-scale metrics are combined to produce both deterministic and probabilistic 
turbulence forecasts.  

1. Weather Model 
 

In the first step, the Advanced Research Weather Research Forecast (WRF-ARW) model, 
developed through a community effort, is used as the weather model for SEATG. This model is a 
finite-difference implementation of the non-hydrostatic fully compressible prognostic equations 
on an Arakawa-C grid with terrain-following sigma vertical coordinates (Skamarock and Klemp 
2008). In recent case studies of several turbulence encounters, WRF-ARW model simulations 
have successfully reproduced both the environmental weather scenario and the small-scale 
structures responsible for several turbulence events (e.g., Trier and Sharman 2009; Trier et al. 
2010; Kim and Chun 2010; 2012). Horizontal domain size covering the entire Contiguous U.S. 
(CONUS) and the horizontal (3 km) and vertical grid spacings of the WRF-ARW model selected 
are the same ones used by the High Resolution Rapid Refresh (HRRR) operational system at 
National Oceanic and Atmospheric Administration (NOAA). Domain and terrain height in this 
model are shown in Fig. 2. The physical packages used in this WRF-ARW model, longest 
forecast time of each model run (6 hour), and frequency of model outputs (15 minutes) are also 
the same as the HRRR used by NOAA (http://ruc.noaa.gov/hrrr/). For the initial and boundary 
conditions, hourly reanalyses data that assimilate enhanced radar reflectivity over the CONUS 
are used from the 13-km Rapid Refresh (RAP) model. This WRF-ARW model was run using the 
Pleiades supercomputer at the NASA Ames Research Center (http://www.nas.nasa.gov/hecc/). 
Wall-clock run-time was one hour to complete one model run with 15-minute forecasts up to six 
hours using 500 cores. 

 

 
Fig. 2. Horizontal domain of WRF-ARW model for SEATG with terrain height (color shading showing 
red as higher than green that is higher than blue). 
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The following is a comparison of model forecasts against the observed meteorology for the 
study period. Figure 3 shows mosaic of observed radar reflectivity from the ground-based radar 
networks at 1730 UTC 7 Sep 2012. At this time, several convective clouds developed along a 
surface cold front elongated from the Great Lakes to Kansas. And, some of locally isolated 
convection clouds also developed ahead of the cold front along a squall line over Illinois and 
Indiana. Due to this convective system, several moderate-or-greater (MOG) turbulence events 
greater than 0.3 EDR value, scattered in the Northeastern CONUS, are observed by in situ EDR 
measurements from commercial aircraft (red dots in Fig. 4). Some of these EDR reports are 
located within the convective clouds, while others are outside of visible deep convection as 
confirmed by the radar data in Fig. 3. On 8 Sep 2012, as an upper-level trough deepened, clusters 
of thunderstorms along the eastward-moving cold front shown in Fig. 3 swept out the entire 
eastern and southern CONUS regions (not shown). 

 

 
Fig. 3. Observed radar reflectivity (dBZ; shading in order of higher dBZ from blue green, yellow to red) 
at 1730 UTC 7 Sep 2012. 
 

 
Fig. 4. Simulated maximum radar reflectivity (dBZ; shading in order of higher dBZ from blue green, 
yellow to red) derived from 2.5-hr forecast data with null (white dots) and MOG (red dots) in situ EDR 
observations at 1730 UTC 7 Sep 2012. 
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These radar observations are reasonably well captured by the WRF-ARW model. In 
particular, forecasted radar echoes along an elongated front from the Great Lakes to Kansas in 
Fig. 4 are qualitatively well matched with the observed radar data in Fig. 3. This gives 
confidence that the large-scale flow-generated convective clouds responsible for aircraft-scale 
turbulence are well reproduced by ARW-WRF model in SEATG. Considering that the upper-
level westerly jet stream is dominant during this period over the northeastern CONUS (see Figs. 
8 and 9), turbulence scattered in this area may also be generated either by a deep convection-
induced disturbance or jet stream-related instabilities. Due to the multiple turbulence-causing 
mechanisms, combinations of turbulence metrics based on various turbulence generation 
mechanisms are essential to accurately forecast turbulence events. 

2. Ten Turbulence Metrics 
 

For the second step, ten turbulence metrics were computed. Although the horizontal grid 
spacing of 3 km was used in the WRF-ARW model, the horizontal size of aircraft-scale 
turbulence (normally 10-1,000 m) is still smaller (i.e., subgrid-scale). However, aircraft-scale 
turbulence can be diagnosed by assuming that small-scale turbulent eddies directly affecting 
commercial aircraft cascade down from large-scale (resolved scale) disturbances revealed as 
high values of the turbulence metrics (e.g., Lindborg 2007). In this study, up to five different 
weather forecasts (e.g., 1.5-5.5 hr forecast lead times) were used to calculate the turbulence 
metrics for each valid time. Upper-level turbulence metrics selected have the high performance 
skills in the operational GTG system (Sharman 2013). The ten turbulence metrics used are the 
WRF-produced subgrid-scale turbulent kinetic energy (SGS TKE), Frehlich and Sharman’s EDR 
(FS EDR), square of total deformation (DEFSQ), absolute value of horizontal divergence 
(ADIV), square of vertical component of relative vorticity (VORTSQ), absolute value of vertical 
velocity (ABW), two-dimensional frontogenesis function on pressure coordinate (F2D), Brown 
turbulence index 1 (Brown1), nested grid model turbulence index (NGM), and the horizontal 
temperature gradient (HTG). Detailed descriptions of these are provided in Appendix A. These 
metrics were then normalized by the gradient Richardson number (Rig), as previous work shows 
this improves the performance skills of turbulence forecast metrics against observed turbulence 
reports from both PIREPs and in situ EDRs (Sharman 2013). 
 

𝑅𝑖! 𝑥,𝑦, 𝑧 =
𝑁! 𝑥,𝑦, 𝑧
𝑆! 𝑥,𝑦, 𝑧 ,                              (1) 

𝑁! 𝑥,𝑦, 𝑧 =
𝑔

𝜃 𝑥,𝑦, 𝑧
𝜕𝜃 𝑥,𝑦, 𝑧

𝜕𝑧 ,                        (2) 

𝑆! 𝑥,𝑦, 𝑧 =
𝜕𝑈 𝑥,𝑦, 𝑧

𝜕𝑧

!

+
𝜕𝑉 𝑥,𝑦, 𝑧

𝜕𝑧

!

.                  (3) 

 
Here, U and V are grid-scale horizontal wind components along x and y directions, and θ is 

potential temperature. N is the buoyancy (Brunt-Väisälä) frequency and S is the vertical wind 
shear. Within a given grid point, areas with smaller background Rig are more vulnerable for 
aircraft-scale turbulence due to any kind of subgrid-scale forcing and/or triggers diagnosed by 
various turbulence metrics in the upper troposphere and lower stratosphere (UTLS) where the 
atmosphere is mostly statically stratified.  



7 
 

 
 

 
 

3. EDR Mapping Technique 
 
 This third step describes how different turbulence diagnostics from separate forecasts are 
mapped onto a common atmospheric turbulence scale. The previously described turbulence 
metrics have different numerical formulations and units. However, a final turbulence forecast 
should be on a common scale such as the EDR. EDR is independent to aircraft type or size and 
mapping turbulence metrics into the EDR scale allows them to be compared with observed in 
situ EDR measurements. So, all of the turbulence metrics calculated were mapped into the EDR 
scale. In this study, the GTG methodology is used by assuming that the model-derived 
turbulence metrics have their own log-normal distributions that are consistent with the best fit 
function of the observed in situ EDR distribution especially for larger values of turbulence 
metrics (Sharman 2013). Figure 5 shows an example of nine EDR-scale turbulence metrics from 
a 2.5-hr forecast product averaged at three different levels at FL300, FL350, and FL400 valid at 
1730 UTC 7 Sep 2012. In general, most of the EDR-scale metrics for both null (smaller than 0.1 
m2/3 s-1) and MOG-level (higher than 0.3 m2/3 s-1) turbulence events are well matched with null 
(gray dots) and MOG (blue dots) of the observed in situ EDR events. 
 

 
Fig. 5. An example of snapshots of nine EDR-scale turbulence metrics (SGS TKE/Ri, FS EDR/Ri, 
DEFSQ/Ri, ADIV/Ri, VRTSQ/Ri, |w|/Ri, F2D/Ri, BR1/Ri, NGM/Ri) derived from 2.5-hr forecast data of 
WRF-ARW model averaged three layers of FL300, FL350, and FL400 valid at 1730 UTC 7 Sep 2012. 
Observed in situ EDR locations are also depicted as gray (null intensity) and blue (MOG intensity) dots in 
all plots. 
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4. SEATG Metric 
 
This final step combines all EDR-scale metrics into deterministic and probabilistic turbulence 

forecasts. At a given forecast time, eventually up to a total 50 of EDR-scale turbulence metrics 
[i.e., ten different turbulence metrics from five different weather forecasts (1.5-5.5 hr forecast 
data)] can be used for the ensemble EDR forecasts as well as SEATG. These three-dimemsional 
turbulence metrics are combined into a three-dimensional ensemble EDR forecast or 
deterministic SEATG using a simple averaging methodology, as follows. 

 

𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒  𝐸𝐷𝑅(𝑥,𝑦, 𝑧) = 𝐸𝐷𝑅! 𝑥,𝑦, 𝑧
!

!!!

/𝑁,      𝑖 = 1,2,3,… ,𝑁.                          (4) 

 
A probabilistic turbulence forecast product takes into account the uncertainties of weather. In 

this study, the probabilistic turbulence product is calculated by evaluating how many turbulence 
metrics at a given grid point have higher EDR values for corresponding turbulence intensity of 
moderate (MOD; 0.3 m2/3 s-1) and severe (SEV; 0.4 m2/3 s-1). Figure 6 shows a snapshot of a 
deterministic forecast using Eq. (4) (left) and a probabilistic forecast for MOG-level turbulence 
(right).  These are averaged from flight levels FL300, FL350, and FL400 using three time-lagged 
ensemble members of forecast data (2.5-4.5 hr) valid on 1730 UTC Sep 2012. Results show the 
deterministic EDR-scale forecast for greater than 0.3 m2/3 s-1 mostly agrees well with MOG-level 
observed in situ EDR measurements (blue dots and asterisks) in Fig. 6 (left). For the probabilistic 
forecast, 30% of MOG-level forecasted turbulence potential is also consistent with MOG-level 
observations (blue dots and asterisks) especially located over western Michigan and northern 
Ohio shown in Fig. 6 (right). Considering that the background (natural) probability for MOG-
level turbulence encounters in UTLS is less than 2%, the forecasted MOG-level turbulence 
potential in Fig. 6 (right) is regarded as significantly large probabilities of MOG-level turbulence 
potentials in UTLS (Sharman et al. 2006; Sharman 2013). 

 

 
Fig. 6. Deterministic EDR-scale forecast (left) and probabilistic forecast for MOG-level turbulence (right) 
averaged using three layers of FL300, FL350, and FL400 using 2.5-4.5 hr time-lagged weather forecasts 
valid at 1730 UTC 7 Sep 2012. Observed in situ EDR measurements for MOD (blue dots) and SEV (blue 
asterisks) intensities are also depicted in the plots. Note that the color shadings in each plot are different.  
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IV. Evaluations of EDR-scale SEATG and Turbulence Metrics 
 
 In this section, the forecasted EDR-scale turbulence metrics shown in Fig. 5 and deterministic 
SEATG shown in Fig. 6 (left) are compared with in situ EDR observations to obtain the skill for 
the forecasted turbulence metrics. In this study, the forecasting performance skills are calculated 
using the probability-of-detection “yes” (PODY) for MOG and “no” (PODN) for null 
observations, used for the validation of various turbulence forecasts (e.g., Sharman et al. 2006; 
Kim et al. 2011). If the forecasted value of each EDR-scale ensemble or turbulence metric at the 
nearest grid point of the observed MOG location around ±30 minutes (30 minute time window) 
at the valid time is higher (lower) than the given threshold of observed in situ EDR, the YforYobs 
(NforYobs) was counted as shown in Table 1. On the other hand, if the forecasted EDR value near 
the null observation is smaller (higher) than the given threshold of observed in situ EDR, the 
NforNobs (YforNobs) was counted. These procedures were applied to a total of 1,018 MOG and 
36,039 null events on 7-8 Sep 2012. Then, this process was repeated through 20 different 
thresholds that ranged from EDR values of 0 to 1, resulting in 20 PODY and PODN statistics for 
both the EDR-scale SEATG and turbulence metrics.  
 
Table 1. 2×2 contingency table for probability-of-detection (POD) statistics methodology. 

Forecast (for) Observation (obs) 
Yes No 

Yes YforYobs YforNobs 
No NforYobs NforNobs 

 

𝑃𝑂𝐷𝑌 =
𝑌!"#𝑌!"#

𝑌!"#𝑌!"# + 𝑁!"#𝑌!"#
,𝑎𝑛𝑑    𝑃𝑂𝐷𝑁 =

𝑁!"#𝑁!"#
𝑌!"#𝑁!"# + 𝑁!"#𝑁!"#

.                    (5) 

 

    
Fig. 7. PODY and PODN statistics of (a) FS EDR/Ri EDR metrics from 1.5-hr (purple dashed line), 2.5-
hr (orange dash-dot-dotted line), 3.5-hr (blue dash-dotted line), 4.5-hr (green dotted line), and 5.5-hr (red 
long dashed line) forecast data and time-lagged ensemble (black bold-solid line) EDR and (b) EDR-scale 
turbulence metrics (SGS TKE/Ri; purple dashed line, FS EDR/Ri; orange dash-dot-dotted line, 
DEFSQ/Ri; blue dash-dotted line, ADIV/Ri; green dotted line, VORTSQ/Ri; red long dashed line) from 
2.5-hr forecast data and ensemble metric EDR (black bold-solid line) compared with the observed in situ 
EDR measurements for 7-8 Sep 2012. 
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Figure 7a shows the x-y plot of these 20 PODY and PODN statistics for the FS EDR/Ri 

turbulence metrics against total of the null and MOG events on 7-8 Sep 2012 as a function of 
different forecast lead times (1.5-5.5 hr). Values of area under the curve (AUC) for 20 PODY 
and PODN statistics are the forecast performance skills for turbulence metrics. An AUC = 1 is a 
perfect forecast [i.e., a turbulence metric can perfectly discriminate all MOG and null turbulence 
events and/or a turbulence metric has a perfect forecast for MOG turbulence without any false 
alarms (1-PODN)]. Using Eq. (4) described in the previous section, a time-lagged ensemble for 
the FS EDR/Ri metric was calculated by combining the FS EDR/Ri metrics from three different 
weather forecasts (between 2.5-4.5 hr forecasts). In Fig. 7a, combining them (black bold line) 
results in higher forecasting performance skill (0.82) than a single FS EDR/Ri turbulence metric 
from one specific weather forecast. Figure 7b shows an example of PODY and PODN statistics 
with their AUC values for SGS TKE/Ri, FS EDR/Ri, DEFSQ/Ri, ADIV/Ri, and VORTSQ/Ri 
derived from the 2.5-hr forecasts against all of the null and MOG in situ EDR observations 
during 7-8 Sep 2012. As in Fig. 7a, when the metrics-ensemble EDR was computed using ten 
turbulence metrics from a specific weather forecast (i.e., 2.5-4.5 hr forecast lead time in Fig. 7b), 
its performance skill (black bold line; 0.81) is also higher than any single metric in Fig. 7b.  

 
Table 2. AUC (area under the curve) values for ten turbulence EDR metrics and time-lagged ensemble 
EDR metrics from different weather forecasts (1.5-5.5 hr forecast) and time-lagged ensemble of 2.5-4.5 hr 
forecasts. AUC for the deterministic SEATG is 0.83 (bold). 

Metrics 1.5-hr 2.5-hr 3.5-hr 4.5-hr 5.5-hr Time-Lagged 
Ensemble 

SGS TKE/Ri 0.73 0.74 0.73 0.72 0.72 0.76 
FS EDR/Ri 0.75 0.79 0.79 0.79 0.78 0.82 
DEFSQ/Ri 0.75 0.77 0.76 0.76 0.76 0.81 
ADIV/Ri 0.74 0.75 0.74 0.74 0.74 0.79 

VORTSQ/Ri 0.67 0.71 0.70 0.71 0.70 0.77 
|w|/Ri 0.72 0.74 0.73 0.73 0.73 0.79 

F2D/Ri 0.70 0.72 0.71 0.71 0.71 0.77 
Brown1/Ri 0.76 0.78 0.77 0.76 0.76 0.81 
NGM/Ri 0.79 0.80 0.79 0.79 0.79 0.82 
HTG/Ri 0.69 0.71 0.70 0.70 0.70 0.74 

Metric Ensemble 0.80 0.81 0.81 0.80 0.80 0.83 
 

All of the AUC values for the ten turbulence metrics from different weather forecasts (1.5-5.5 
hr forecasts) as well as for both time-lagged ensemble EDRs (rightmost column) and metrics 
ensemble EDRs (lowermost row) are also shown in Table 2. In general, all of the turbulence 
metrics have the best performance for the 2.5-hr forecast. As forecast-lead time increases from 
1.5-hr to 2.5-hr, the forecast skill improves due to model spin-up time required to build the 
convective storms along the elongated cold frontal system. The skill is slightly reduced as the 
forecast-lead time increases from 2.5-hr to 5.5-hr. Eventually, the AUC value of deterministic 
SEATG forecast was calculated using both the time-lagged ensemble forecast and an ensemble 
of the turbulence metrics (i.e., ensemble of ensemble or super ensemble), which in turn has the 
best turbulence forecasting skill (AUC = 0.83 in Table 2) verified against observed in situ EDR 
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measurements for 7-8 Sep 2012. This is consistent with the previous results of turbulence 
forecasts that the integrated turbulence metrics are always superior in forecasting skill than any 
single turbulence metric (e.g., Sharman et al. 2006; Kim et al. 2011; Gill 2012; Gill and Stirling 
2012).  

V. Example of SEATG Application to ATM 
 

In this study, an example wind-optimal route (WOR) considering probabilistic SEATG 
turbulence forecasts is presented to illustrate the use of this information to develop two simple 
lateral turbulence avoidance routes (LTARs). With a correct choice of initial heading angle, the 
minimum-time path in the presence of wind can be obtained by applying Pontryagin’s Minimum 
Principle to determine the analytic solution for the control parameter (i.e., the heading angle of 
cruising aircraft) in the governing equations of the simplified horizontal aircraft motions on 
sphere of Earth, as follows (e.g., Hok et al. 2011). 
 

𝑑𝜙(𝑡)
𝑑𝑡 =

𝑉!  𝑐𝑜𝑠𝜓(𝑡)+ 𝑈 𝜙,𝜃, 𝑧
𝑅  𝑐𝑜𝑠𝜃(𝑡) ,                          (6) 

𝑑𝜃(𝑡)
𝑑𝑡 =

𝑉!𝑠𝑖𝑛𝜓(𝑡)+ 𝑉 𝜙,𝜃, 𝑧
𝑅 ,                            (7) 

𝑑𝜓(𝑡)
𝑑𝑡 = −

𝐹!"#$ 𝑡
𝑅  𝑐𝑜𝑠𝜃(𝑡) .                            (8) 

 
Here, ϕ, θ, ψ are longitude, latitude, and heading angle of aircraft, and U and V are u and v 

wind components, respectively. R is the Earth’s radius that Earth is assumed to be a sphere and R 
>> z, and Va is the cruising speed of aircraft that is 250 m s-1. Full derivation of analytic solution 
for control parameter (ψ) including Fwind (t) is described in Appendix B.  
 

𝛼 𝑡 + 1 = 𝛼 𝑡 + ∆𝑡
𝑑𝛼 𝑡
𝑑𝑡 ,      𝑤ℎ𝑒𝑟𝑒  𝛼 = 𝜙,𝜃,𝑎𝑛𝑑  𝜓.                      (9) 

 
Integration of Eqs. (6), (7), and (8) was then conducted using an explicit Euler forward 

integration scheme (9) from LAX [ϕ(t0), θ(t0), ψ(t0)] with Δt = 60 seconds until the great circle 
distance between a waypoint of trajectory and JFK [ϕ(tf), θ(tf), ψ(tf)] is minimized.  

In this study, to select the optimal initial heading angle, the integration of each trajectory with 
different initial heading angles were iterated 90 times with a total of 90 initial heading angles that 
ranged from ψGC – 22.5° to ψGC + 22.5° with 0.5° increments, where the ψGC is great circle 
heading angle between LAX and JFK. Finally, the closest trajectory passing through JFK [ϕ(tf), 
θ(tf), ψ(tf)] is regarded as the WOR from LAX to JFK at FL350. The WOR is shown as blue line 
in Fig. 8. 

𝐽 = 𝐶! + 𝐶!   𝑟 𝜙,𝜃, 𝑧 𝑑𝑡
!!

!!
.                                      (10) 

 
LTAR can be optimized by determining the heading angle that minimizes a cost function (J). 

Here, Ct and Cr are the cost coefficients of travel time and penalty areas through forecasted 
turbulence areas along the trajectory, respectively. In this study, r(ϕ, θ, z) = 1 when the 
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probabilistic SEATG forecast for MOG-level turbulence is higher than 50%, and elsewhere r(ϕ, 
θ, z) = 0 (e.g., Sridhar et al. 2010; Hok et al. 2011). Eventually, an analytic solution for heading 
angle of the LTAR is obtained, as follows: 
 

𝑑𝜓(𝑡)
𝑑𝑡 = −

𝐹!"#$ 𝑡 + 𝐹!"#$(𝑡)
𝑅  𝑐𝑜𝑠𝜃 𝑡    𝐶! + 𝐶!   𝑟 𝜙,𝜃, 𝑧

.                                    (11) 

 
Full derivation of this, including Fturb(t), is in Appendix B. Similar to the WOR, the LTAR 

also uses the great circle (ψGC) heading angle as the first guess of the initial heading angle. 
Following this, routes starting from LAX using 90 extremal trajectories with different initial 
heading angles were calculated by integrating Eqs. (6), (7), and (11) using Eq. (9). Finally, the 
LTAR that passes nearest to destination (i.e., JFK) is regarded as the best LTAR in this study.  
 

 
Fig. 8. Probabilistic SEATG forecast for MOG-level turbulence with horizontal wind vectors and Wind-
Optimal Route (WOR; blue line) and Lateral Turbulence Avoidance Route (LTAR; red line) at FL350 
from Los Angeles (LAX) to John F. Kennedy (JFK) international airports using 3.5-5.5 hr forecasts valid 
at 1730 UTC 9 Sep 2010. For the magnitude of wind speed, reference vector for 30 m s-1 of horizontal 
wind speed is depicted on the right bottom of the plot. 
 

In Fig. 8, LTAR trajectory for 50% MOG-level turbulence using 3.5-5.5 hr forecasts is 
depicted as a red line. Consequently, for 50% of MOG-level forecasted turbulence in Fig. 8, the 
flight time for the WOR (blue line) takes 238 minutes where 56 minutes of that time was in 
MOG-level forecasted turbulence areas. The LTAR (red line) takes total of 254 minutes flying 
time and used 6.7% more fuel to entirely avoid forecasted 50% MOG-level turbulence areas. 
Note that this LTAR shown in Fig. 9 would not be the best efficient maneuver as there are 
several other ways to avoid the potential constraints of turbulence such as tactical change of 
flight altitude and route just ahead of turbulence areas. Additionally, this LTAR is initiated from 
LAX which is not as preferable to delaying such a maneuver until closer to the forecasted 
turbulence constraint, because the maneuver decision needs to consider several factors like air-
capacity reduction and confidence of the weather forecast. Delaying the maneuver is shown in 
the following routing examples. 
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Fig. 9. The same as Fig. 8 except for the LTARs (green lines) initiated after 1.5-hr (left) and 2.5-hr (right) 
departing from LAX along the WOR (blue lines) between LAX to JFK using 2.5-4.5 hr forecasts (left) 
and using 1.5-3.5 hr forecasts (right) valid at 1730 UTC 9 Sep 2010. 

 
Two other alternative LTARs that initiated 1.5 hrs (left) and 2.5 hrs (right) after departing 

LAX along the WOR (blue lines) shown in Fig. 9 are shown as an example of delaying the 
maneuver to account for uncertainties of the weather. An aircraft that follows the LTAR 1.5 hrs 
after departing LAX (left in Fig. 9) has a flying time of 244 minutes, which saves 10 minutes 
more than that if it were to follow the LTAR shown in Fig. 8. However, if an aircraft follows an 
LTAR 2.5 hrs after departing LAX, when it is closer to more recently forecasted regions (right in 
Fig. 9), it takes total of 256 minutes of flying time. This is 2 minutes even longer than the LTAR 
shown in Fig. 8. Alternatively, a vertical deviation could have been used instead if that may 
result in less fuel used.  

VI. Summary and Conclusions 
 

In this paper, the development of a higher resolution super ensemble turbulence system is 
described with an example application for routing around turbulence constraints in the CONUS. 
The SEATG system can create both a deterministic and probabilistic turbulence forecast using a 
sequence of four procedures. These include high-resolution weather modeling, calculation of ten 
turbulence metrics, mapping of these metrics to an EDR-scale, and combining the predictions of 
these ten metrics into a forecast SEATG product. This system is directly motivated by and 
modified upon the operational Graphic Turbulence Guidance (GTG), which we believe will give 
improved performance. One modification is a finer horizontal grid, and the second is the 
development of a super ensemble (i.e., time-lagged ensemble forecast with an ensemble of 
various turbulence metrics). Third is the probabilistic turbulence information. The developed 
SEATG turbulence forecast was created and evaluated for 7-8 Sep 2012 when several convective 
clouds developed along the surface frontal system and swept the mid and eastern CONUS. The 
deterministic version of the turbulence forecast was verified against observed in situ turbulence 
measurements. The SEATG was observed to have a higher forecasting performance than other 
ensemble EDRs as well as any single turbulence metric. Probabilistic SEATG forecast 
information is used for the ATM decision.  

A simple Wind-Optimal Route (WOR) was developed to show the utility of this forecast 
product for defining more operationally useful WOR. Using the WOR and ignoring any 
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turbulence maneuvers, an aircraft was modeled to encounter MOG-level turbulence for 56 
minutes but to laterally detour around these potential areas of the turbulence from the departure 
airport (LAX) an aircraft would incur 16 minutes (6.7%) more travel time to fly to its destination 
(JFK). Delaying the horizontal maneuver would result in either a savings of 10 minutes if the 
maneuver was delayed 1.5 hrs after leaving LAX or an extra 2 minutes if the maneuver was 
delayed by 2.5 hrs. 

Future work includes exploring other alternate time-synchronized routing algorithm and 
application of the SEATG methodology to create forecasted turbulence regions, which can be 
avoided. Practical considerations include reducing the SEATG run-time, which would make 
SEATG useful for more tactical decisions such as near-term routing around convective weather. 
This can be accomplished by using data from a nowcast version of the GTG or output from a 
faster-running numerical model. 
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Appendix A 
 

1) SGS TKE: Subgrid scale turbulent kinetic energy (SGS TKE) is turbulence-related variable 
that is only directly produced by the weather model. In the WRF model used, the Mellor-
Yamada-Janjić (MYJ) planetary boundary layer (PBL) parameterization (Janjić 2002) predicts 
local vertical turbulent mixing not only in the PBL but also in the free atmosphere through the 
Mellor-Yamada level 2.5 turbulence closure model: 
  

𝜕𝑞!/2(𝑥,𝑦, 𝑧)
𝜕𝑡 = −𝑢!𝑤 𝑥,𝑦, 𝑧

𝜕𝑈 𝑥,𝑦, 𝑧
𝜕𝑧 − 𝑢!𝑤 𝑥,𝑦, 𝑧

𝜕𝑉 𝑥,𝑦, 𝑧
𝜕𝑧 + 𝛽𝑔𝜃!!𝑤 𝑥,𝑦, 𝑧

+
𝜕
𝜕𝑧 0.2ℓ𝓁𝑞

𝜕𝑞!/2
𝜕𝑧 − 𝜀.                                                      (𝐴1) 

q2/2, u’, w, U, V, β, g, θv, l, and ε are the TKE, subgrid-scale u and w wind components, grid-
resolvable U and V wind components, β = 1/273, gravity acceleration (9.8 m s-2), virtual potential 
temperature, mixing length, and energy dissipation rate as a function of TKE and mixing length 
(l), respectively. Variables under the bar are subgrid-scale vertical momentum and heat fluxes 
that are parameterized in the ARW-WRF model. 

 
2) FS EDR: The EDR (ε1/3) at given grid point are estimated from second-order structure 

functions for u and v wind components along horizontal directions by assuming that the 
sensitivity to the universal structure functions in different NWP model is negligible in small-
scales (Frehlich and Sharman 2004):  
 

𝜀
!
! 𝑥,𝑦, 𝑧 =

< 𝑞 𝑥,𝑦, 𝑧 − 𝑞 𝑥,𝑦, 𝑧 + 𝑠 ! >
𝐶! 𝑠 𝐷!"! 𝑠

.                                                      (𝐴2) 
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q is u and v wind components, and s, Cq(s), and DDEF(s) are separation distance, correction 

function that takes into account NWP model spatial filter, and the reference structure function 
given by Lindborg (1999). <> bracket is the ensemble mean of four separation (s) options such 
as longitudinal u and v and meridional u and v wind components.  

 
3) DEFSQ: Square of total deformation (DEF) that is sum of shear deformation and stretching 

deformation (Bluestein 1992). 

𝐷𝐸𝐹 𝑥,𝑦, 𝑧 =
𝜕𝑉 𝑥,𝑦, 𝑧

𝜕𝑥 +
𝜕𝑈 𝑥,𝑦, 𝑧

𝜕𝑦

!

+
𝜕𝑈 𝑥,𝑦, 𝑧

𝜕𝑥 −
𝜕𝑉 𝑥,𝑦, 𝑧

𝜕𝑦

!
!
!

.    (𝐴3) 

 
4) ADIV: Absolute value of horizontal divergence (DIV). 

 

𝐷𝐼𝑉 𝑥,𝑦, 𝑧 =
𝜕𝑈 𝑥,𝑦, 𝑧

𝜕𝑥 +
𝜕𝑉 𝑥,𝑦, 𝑧

𝜕𝑦 .                                              (𝐴4) 

 
5) VORTSQ: Square of vertical component of relative vorticity (VORT). 

 

𝑉𝑂𝑅𝑇 𝑥,𝑦, 𝑧 =
𝜕𝑉 𝑥,𝑦, 𝑧

𝜕𝑥 −
𝜕𝑈 𝑥,𝑦, 𝑧

𝜕𝑦 .                                              (𝐴5) 

  
6) ABW: Absolute value of vertical velocity. 

 
𝐴𝐵𝑊 𝑥,𝑦, 𝑧 = |𝑤 𝑥,𝑦, 𝑧 |.                                              (𝐴6) 

 
7) F2D: Full 3-dimensional frontogenesis is simplified to 2-dimensional frontogenesis 

function (F2D) on p-coordinate using thermal-wind relation (Bluestein 1992). 
 

𝐹2𝐷 𝑥,𝑦, 𝑧 = ∇!𝜃 𝑥,𝑦, 𝑧 !! −
𝜕𝜃 𝑥,𝑦, 𝑧

𝜕𝑥

! 𝜕𝑈 𝑥,𝑦, 𝑧
𝜕𝑥

−
𝜕𝜃 𝑥,𝑦, 𝑧

𝜕𝑦
𝜕𝜃 𝑥,𝑦, 𝑧

𝜕𝑥
𝜕𝑉 𝑥,𝑦, 𝑧

𝜕𝑥

−
𝜕𝜃 𝑥,𝑦, 𝑧

𝜕𝑥
𝜕𝜃 𝑥,𝑦, 𝑧

𝜕𝑦
𝜕𝑈 𝑥,𝑦, 𝑧

𝜕𝑦

−
𝜕𝜃 𝑥,𝑦, 𝑧

𝜕𝑦

! 𝜕𝑉 𝑥,𝑦, 𝑧
𝜕𝑦 .                  (𝐴7) 

Here, θ is potential temperature (K).  
 
8) Brown1: Brown’s index (Brown 1973) is a simplification of the original Richardson 

number tendency equation by Roach (1970) using thermal wind relation and assumption that the 
gradient wind is horizontal wind.   

𝐵𝑟𝑜𝑤𝑛1 𝑥,𝑦, 𝑧 = 0.3 𝑉𝑂𝑅𝑇 𝑥,𝑦, 𝑧 + 𝑓 𝑥,𝑦 ! + 𝐷𝐸𝐹 𝑥,𝑦, 𝑧 !
!
!.                      (𝐴8) 
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Here, f is the Coriolis frequency. 
 
9) NGM1: Multiplication of horizontal wind speed and total deformation were found to be the 

most skillful turbulence metric used in the NCEP’s Nested Grid Model (NGM) output (Reap 
1996). 

𝑁𝐺𝑀1 𝑥,𝑦, 𝑧 = 𝑈 𝑥,𝑦, 𝑧 ! + 𝑉(𝑥,𝑦, 𝑧)! !/!×𝐷𝐸𝐹 𝑥,𝑦, 𝑧 .                                      (𝐴9) 
 

10) HTG: Horizontal temperature gradient (HTG) is the deformation and vertical wind shear 
via the thermal-wind relation, which usually used by airliners (Buldovskii et al. 1976). 

𝐻𝑇𝐺 𝑥,𝑦, 𝑧 =
𝜕𝑇 𝑥,𝑦, 𝑧

𝜕𝑥

!

+
𝜕𝑇 𝑥,𝑦, 𝑧

𝜕𝑦

!
!
!

.                                                                              (𝐴10) 

Here, T is temperature (°C). 
 

Appendix B 
 

Pontryagin’s Minimum Principle (Bryson and Ho 1975) is applied to determine the control 
function for heading angle of aircraft that minimizes cost function (10) along optimal trajectory 
governed by Eqs. (6) and (7). The necessary condition for the control functions and the optimal 
trajectory is that there exist continuously differentiable Lagrange multipliers (λΦ, λ θ). The 
Hamiltonian is then, 

𝐻 = 𝐶! + 𝐶!   𝑟 𝑥,𝑦, 𝑧 +
𝜕𝜆
𝜕𝜙

𝑉!  𝑐𝑜𝑠𝜓 𝑡 + 𝑈 𝜙,𝜃, 𝑧
𝑅  𝑐𝑜𝑠𝜃(𝑡) +

𝜕𝜆
𝜕𝜃

𝑉!  𝑠𝑖𝑛𝜓 + 𝑉 𝜙,𝜃, 𝑧
𝑅 . (𝐵1) 

 
So, the Euler-Lagrange equations are, as follows (B2), (B3), and (B4). 

 

−
𝑑
𝑑𝑡

𝜕𝜆
𝜕𝜙 =

𝜕𝐻
𝜕𝜙

=
𝜕
𝜕𝜙 𝐶!   𝑟 𝜙,𝜃, 𝑧 +

1
𝑅  𝑐𝑜𝑠𝜃(𝑡)

𝜕𝜆
𝜕𝜙

𝜕
𝜕𝜙𝑈 𝜙,𝜃, 𝑧

+
1
𝑅

𝜕𝜆
𝜕𝜃

𝜕
𝜕𝜙 𝑉 𝜙,𝜃, 𝑧 .          (𝐵2) 

−
𝑑
𝑑𝑡

𝜕𝜆
𝜕𝜃 =

𝜕𝐻
𝜕𝜃
=
𝜕
𝜕𝜃 𝐶!   𝑟 𝜙,𝜃, 𝑧 +

1
𝑅  𝑐𝑜𝑠𝜃(𝑡)

𝜕𝜆
𝜕𝜙

𝜕
𝜕𝜃𝑈 𝜙,𝜃, 𝑧

+
𝜕𝜆
𝜕𝜙

𝑡𝑎𝑛𝜃(𝑡)   𝑉!  𝑐𝑜𝑠𝜓 𝑡 + 𝑈(𝜙,𝜃, 𝑧)
𝑅  𝑐𝑜𝑠𝜃(𝑡) +

1
𝑅

𝜕𝜆
𝜕𝜃

𝜕
𝜕𝜃 𝑉 𝜙,𝜃, 𝑧 .    (𝐵3) 

 
Under the condition that there is extremum for t0 ≤ t ≤ tf, the optimal heading angle satisfies, 

𝜕𝐻
𝜕𝜓 = 0   → 𝑡𝑎𝑛𝜓 =

𝜆!   𝑐𝑜𝑠𝜃
𝜆!

.                          (𝐵4) 

And, for the necessary condition for optimality is H(tf) = 0. So, the Lagrange multipliers are 
obtained when the Hamiltonian = 0, as follows. 
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𝜕𝜆
𝜕𝜙 =

− 𝐶! + 𝐶!   𝑟 𝜙,𝜃, 𝑧   𝑅  𝑐𝑜𝑠𝜓 𝑡   𝑐𝑜𝑠𝜃(𝑡)
𝑉! + 𝑈 𝜙,𝜃, 𝑧   𝑐𝑜𝑠𝜓 𝑡 + 𝑉 𝜙,𝜃, 𝑧   𝑠𝑖𝑛𝜓(𝑡) .                          (𝐵5) 

𝜕𝜆
𝜕𝜃 =

− 𝐶! + 𝐶!   𝑟 𝜙,𝜃, 𝑧   𝑅  𝑠𝑖𝑛𝜓 𝑡
𝑉! + 𝑈 𝜙,𝜃, 𝑧   𝑐𝑜𝑠𝜓 𝑡 + 𝑉 𝜙,𝜃, 𝑧   𝑠𝑖𝑛𝜓(𝑡) .                          (𝐵6) 

 
Differentiate in right and left hand sides of Eq. (B4) with respect to time, and Eqs. (B2), (B3), 

(B5), and (B6) are substituted, 
𝑑𝜓(𝑡)
𝑑𝑡 = −

𝐹!"#$ 𝑡 + 𝐹!"#$ 𝑡
𝑅  𝑐𝑜𝑠𝜃 𝑡    𝐶! + 𝐶!   𝑟 𝜙,𝜃, 𝑧

.                                    (𝐵7) 

𝑤ℎ𝑒𝑟𝑒, 𝐹!"#$ 𝑡

= −𝑠𝑖𝑛𝜓(𝑡)  𝑐𝑜𝑠𝜓(𝑡)
𝜕𝑈 𝜙,𝜃, 𝑧

𝜕𝜙 + 𝑐𝑜𝑠!𝜓 𝑡 𝑠𝑖𝑛𝜃 𝑡 𝑈 𝜙,𝜃, 𝑧

+ 𝑐𝑜𝑠!𝜓 𝑡 𝑐𝑜𝑠𝜃 𝑡
𝜕𝑈 𝜙,𝜃, 𝑧

𝜕𝜃 −
𝜕𝑉 𝜙,𝜃, 𝑧

𝜕𝜙

+ 𝑠𝑖𝑛𝜓 𝑡 𝑐𝑜𝑠𝜓 𝑡 𝑠𝑖𝑛𝜃 𝑡 𝑉 𝜙,𝜃, 𝑧 + 𝑐𝑜𝑠𝜓 𝑡 𝑠𝑖𝑛𝜓 𝑡 𝑐𝑜𝑠𝜃 𝑡
𝜕𝑉 𝜙,𝜃, 𝑧

𝜕𝜃
+ 𝑉!  𝑐𝑜𝑠𝜓 𝑡 𝑠𝑖𝑛𝜃 𝑡 + 𝑐𝑜𝑠!𝜓(𝑡)

𝜕𝑉 𝜙,𝜃, 𝑧
𝜕𝜙 . 

    𝐹!"#$ 𝑡 = −𝑠𝑖𝑛𝜓 𝑡 𝑐𝑜𝑠𝜓 𝑡 𝑠𝑖𝑛𝜃 𝑡 𝑉 𝜙,𝜃, 𝑧 𝐶!𝑟 𝜙,𝜃, 𝑧

+ 𝑐𝑜𝑠𝜃 𝑡 𝑐𝑜𝑠𝜓 𝑡 𝑠𝑖𝑛𝜓 𝑡
𝜕𝑉 𝜙,𝜃, 𝑧

𝜕𝜃 𝐶!𝑟 𝜙,𝜃, 𝑧

− 𝑐𝑜𝑠𝜃 𝑡 𝑐𝑜𝑠𝜓 𝑡 𝑠𝑖𝑛𝜓 𝑡 𝑉 𝜙,𝜃, 𝑧 𝐶!
𝜕𝑟 𝜙,𝜃, 𝑧

𝜕𝜃
+ 𝑉!𝑐𝑜𝑠𝜓 𝑡 𝑠𝑖𝑛𝜃 𝑡 𝐶!𝑟 𝜙,𝜃, 𝑧 + 𝑉!𝑠𝑖𝑛𝜓 𝑡 𝐶!

𝜕𝑟 𝜙,𝜃, 𝑧
𝜕𝜙

−
𝜕𝑉 𝜙,𝜃, 𝑧

𝜕𝜙 𝐶!𝑟 𝜙,𝜃, 𝑧 + 𝑉 𝜙,𝜃, 𝑧 𝐶!
𝜕𝑟 𝜙,𝜃, 𝑧

𝜕𝜙

− 𝑠𝑖𝑛𝜓 𝑡 𝑐𝑜𝑠𝜓 𝑡
𝜕𝑈 𝜙,𝜃, 𝑧

𝜕𝜙 𝐶!𝑟 𝜙,𝜃, 𝑧

+ 𝑠𝑖𝑛𝜓 𝑡 𝑐𝑜𝑠𝜓 𝑡 𝑈 𝜙,𝜃, 𝑧 𝐶!
𝜕𝑟 𝜙,𝜃, 𝑧

𝜕𝜙
+ 𝑐𝑜𝑠!𝜓 𝑡 𝑠𝑖𝑛𝜃 𝑡 𝑈 𝜙,𝜃, 𝑧 𝐶!𝑟 𝜙,𝜃, 𝑧

+ 𝑐𝑜𝑠!𝜓 𝑡 𝑐𝑜𝑠𝜃 𝑡
𝜕𝑈 𝜙,𝜃, 𝑧

𝜕𝜃 𝐶!𝑟 𝜙,𝜃, 𝑧 − 𝑉!𝑐𝑜𝑠𝜃 𝑡 𝑐𝑜𝑠𝜓 𝑡 𝐶!
𝜕𝑟 𝜙,𝜃, 𝑧

𝜕𝜃
− 𝑐𝑜𝑠𝜃 𝑡 𝑐𝑜𝑠!𝜓 𝑡 𝑈 𝜙,𝜃, 𝑧 𝐶!

𝜕𝑟 𝜙,𝜃, 𝑧
𝜕𝜃 + 𝑐𝑜𝑠!𝜓 𝑡

𝜕𝑉 𝜙,𝜃, 𝑧
𝜕𝜙 𝐶!𝑟 𝜙,𝜃, 𝑧

− 𝑐𝑜𝑠!𝜓 𝑡 𝑉 𝜙,𝜃, 𝑧 𝐶!
𝜕𝑟 𝜙,𝜃, 𝑧

𝜕𝜙 . 

 
In this study, Ct = 1, and Cr = 1 when the probabilistic SEATG at given grid point greater than 

50% for MOG-level turbulence, while Cr = 0 when the SEATG is less than 50% for MOG-level 
turbulence at the given point. 
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