Approved for Public Release; Distribution Unlimited. 14-0744

Comparing and Clustering Ensemble Forecast Membersto
Support Strategic Planning in Air Traffic Flow M anagement

Shin-Lai (Alex) Tiert, Christine Taylofand Craig Wanke
The MITRE Corporation, McLean, VA, 22102

This paper proposes a methodology for using ensemble weather forecasts to assist in air
traffic flow contingency management. Specifically, the weather ensemble members are
converted into scenarios of weather impact, and performance metrics are formulated to
assess the similarity of these scenarios. Metrics for measuring weather impacts on both en
route and terminal environments are considered in scenario clustering. Representative
scenarios are selected using a proposed index, which quantifies the representativity of
scenarios and addresses the requirements of representative selections. A numerical
experiment is conducted using a simulation of historical traffic and weather forecast data to
demonstrate the proposed methodology. It also indicates that when combining en route and
terminal impact metrics, a proper weighting approach between two metric categories is
needed to reflect operational preferences since their tradeoff may influence the clustering
resultsaswell astherepresentative selection.

|. Introduction

TRATEGIC traffic flow management (TFM) addressesdictions of significant capacity/demand imbalances

four or more hours in the future. The current sgat planning process relies heavily on the memsalslation
of weather forecasts into traffic impact. Howevat, these look-ahead times, forecast uncertaintg isiajor
challenge and requires a formal and integratedcampr for predicting weather impact.  Although bitistic
forecasts are available, specifying effective styits for delay mitigation requires more expliciffic impact
information in both space and time dimensions.

In Tien et al. [4], the ensemble members from therBRange Ensemble Forecast (SREF) product hame be
used to represent a wide range of deterministidiveeacenarios for the en route airspace. Whilé eathe
scenarios is considered to have the same likelilbbatcurrence, subsets of the members can deratasimilar
characteristics of impact which permits clustermgl identification of a small number of represewgatveather
scenarios. Such a limited but representative numbgtenarios can significantly reduce the effeduired by
decision makers to develop mitigation strategiesfxh scenario.

In this study, we will extend the research scop@bagrating the weather impact prediction in bethroute and
terminal airspace. Section Il describes the traiosidrom weather forecast variables to capacitduotion of the
National Airspace System (NAS). The capacity reidimcinodels developed respectively for en route AECtors
and airports will be employed to facilitate theimsttion of weather impact as well as the systemevddlays via a
fast-time simulation tool. In Section Il the pemfieance metrics for classifying weather scenarieseaplored. An
ad hoc clustering algorithm as well as a represieatanember selection method is proposed. Section |
summarizes the numerical experiment and includesnaitivity analysis that explores the tradeoffisetn en route
and terminal impact. The difference between thetehing results and representative member seleafibhe
discussed.

[1. Evaluation of Weather Impact

The SREEis composed of 21 87-hour deterministic forecasts is the primary source of weather data for this

study. Each ensemble member represents one tngjeatonveather development through the National péaicse
System (NAS) and each member is assumed equatly li& occur.
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To estimate the impact on air traffic, simulatiaols are often employed for quantifying NAS perfarme.
Flow Contingency Management (FCM) developed by WHERE Corporation is a decision support concept and
prototype that integrates weather-impact forecagts a NAS queuing network model to aid decisiorkera in the
development of strategic plans for multiple pointiutcomes of weather imp&ét. FCM estimates congestion by
simulating the propagation of demand through thevoek, subject to capacity reduction of NAS resasrcue to
weather or other constraints.

To leverage FCM’'s queuing network model for simulgtweather impact, the 21 SREF forecasts neectto b
translated into capacity reduction of Air Traffio@rol (ATC) sectors and airports. For quantifyithge capacity
loss on ATC sectors from SREF, Tien et al. [4] ¢tareted a functional relationship between the réduacrate of
sector capacity and the hourly precipitation, whilone of the SREF forecast variables. The SRE&ee grids
are matched with and aggregated by ATC sectorthesgridded precipitation data can be convertea @nsector-
based format to predict a capacity reduction rafize loss of capacity of an ATC sector would be riguction
ratio multiplied by the nominal capacity estimatgdFCM.

Predicting airport capacity at a strategic lookahéme is a challenging task. Weather forecastsiid,
ceiling, visibility, and convective activities mggintly determine runway configuration and the asated arrival
rate (AAR) and departure rate (ADR) for the airpdi estimate the impact from weather forecastaastation
from forecast variables to available airport cafyagiust be built. Currently we are developing atptype that
accounts for critical SREF variables as well asll@baracteristics for predicting airport-spec#iéR and ADR.
Such a prototype will be applied in our future wéwk modeling terminal weather impact.

In this study we employ a simplistic approach afideg airport capacity for the purpose of conceglidation:
For each airport considered, the precipitationdase (mm/hr) of the weather grid cell in whichdsides is
converted into radar reflectivity (dBZ) using Ed)'f. Then, we use Table 1 for categorizing the impact
determining the capacity reduction ratio. The loksapacity of an airport can thus be derived fromitiplying the
predicted reduction ratio with the nominal arrigald departure capacity assumed in FCM.

With the estimated capacity of sectors and aigbased on SREF forecasts, 21 weather-impact $ogrman
be generated in FCM, each of which are provideth délay statistics for ATC sectors and airportgitne. These
scenarios will allow quantitative evaluation fomgoarison and clustering.

8
dBZ =10 (loglo 200 + glog10 Precip) Eq. (1)

Table 1 Terminal Impact Categorization Table

Reflectivity (dBZ) Description Reduction Rate
Below 30 Light 0%
30~ 40 Moderate 20 %
40 ~ 50 Heavy 40 %
Above 50 Extreme 60 %

[11. Clustering M ethodol ogy

This section describes a series of steps emplayeglvaluating weather impacts, clustering weathgyaict
scenarios, and selecting representative scenarios.

A. Impact Metricsfor En Route ATC Sectors
After FCM generates 21 SREF weather-impact scengpimper aggregation of spatiotemporal delay idata

needed to facilitate scenario comparison. For Ag@a's, the idea is to summarize the spatiotempuiaialys with
two aggregate values: spatially weighted delaytantporally weighted delay. Le(s, t) denote the delay value
associated with secterat timet, wheres € {1, ...,5},t € {1, ..., T}. Two sets of summary metrics are first defined
to capture the impact in the spatial and tempdraédsions.

+ Spatial summary metriSI(s) = ¥I_, e(s, t), and

» Temporal summary metri@(t) = ¥5_, e(s, t).



The next step is to aggregate the summary metyi¢isrie and sectors. The spatial summary metricenders a
1 x S row vector, corresponding fbsectors in the weather forecast region. To incafeathe geographical
relationship of sectors into metric aggregatiosymmation technique is proposed:

Adjacency Weighted Summation =V - (6 +1)-VT

whereV is a1l x S row vector, whose transposé/i§, I is aS x S identity matrix, and is the first-ordes x S
adjacency matrix of sector with zeros in the diajon

Similarly, time series data could also be weighigdadjacency”, which needs to be defined. The t@rap
summary metrid@’l renders d x T row vector, corresponding ®time periods over the weather forecast horizon.
The adjacency matri& for TI is aT x T matrix such that:

5—{ s |bifi=i+lorj=i—1forij= 1,...,T.}
| "¥ |0, otherwise.

Spatially and temporally weighted delay metrics ttars be computed for a spatiotemporal profilerofeute
delays and used for scenario comparison. Morelddtdiscussion on metric characteristics can badan Tien et
al. [4].

B. Impact Metricsfor Terminal

In FCM, airport delay statistics are collectedboth departure and arrival operations at the batieslaf
terminal airspace. Thus, for each airport, the@tismporal profile for departure delays as wefoasrrival delays.
The temporally weighted metric introduced in IlicAn used to summarize these two delay profilesderdo
facilitate scenario comparison.

C. Clustering Weather-Impact Scenarios

Enriquez and Kurcz [7] develop an iterative versidthe Spectral Clustering algorithm that was usecluster
subjects that represent 2D aircraft trajectorié® Jubjects are first evaluated by pair-wise “sanity” defined by
Euclidean norm and a Gaussian kernel and theriitelwpartitioned into two groups until the stopgicriteria are
reached. Thus, there is no need to pre-specifsisadenumber of clusters.

Specifically, assuming that there @fesubjects to be clustered, the main input of tigersthm is a “similarity”
matrixW = {w; ;| i,j = 1, ..., N}, which is typically constructed with a Gaussianied:

||xi —x,-||
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w; ; = exp(

wherex; is the metric vector for an individual subject; fo= 1, ..., N, and||-|| is the Euclidean norm. This
ensures that if two subjects are dissimilar inrthegtric values, theiw; ; will be small. The scale parametein Eq.
(5) determines the width of the neighborhood ang filays a critical role in computing similarity.

Tien et al. [4] tailored the algorithm for the régunents of FCM by determining the scale parameteased on
the input data, as opposed to using a pre-defineahpeter value. As a result, the algorithm is naal&ptive to the
magnitude of input data and avoids the need to tiimscale parameter whenever there is a changetot or a
change of weather day, which is desirable for tigad- application as weather impact intensity vadayg by day.

With the proposed impact metrics for both en r@utd terminal airspace, the clustering algorithriiam et al.
[4] can be applied. Scenarios with similar chanasties will be identified so that the representatscenarios could
be determined.

D. Selection of Representative Scenarios
After obtaining the clustering results, a repreatwe scenario from each group may be identifieith Wwbth

subjective and objective judgments. For the TFMppae, the representative scenarios should demtnstme of
the characteristics proposed in Xue et al. [8]:

1. Each representative scenario should correspond eoiginal SREF member.

2. Each representative scenario should be signifigatiffierent from other representative scenarios.

3. The representative scenarios together should atidygispan all the scenarios.

4. The probability associated with each representaoenario indicates the fraction of representaition

the ensemble by the associated cluster.



Molteni et al. [9] introduced the concept of regmsitivity index RI) for objectively selecting the representative
scenarios from clusters of scenarios. For thisysttiee RI of scenaridis reformulated as follows:

_ Zjecwiy/(N 1€y

RI;
Zjec Wi,j/|C|

wherew; ; is the similarity metric between scenaricand; defined in Eq.(5),C is the set of scenario indices in
the same cluster d@sandN is the total number of scenarios.

The proposedRl of a scenario takes into account the similaritasueement inside and outside of a cluster. It is
the ratio between its average similarity metricsrfrthe scenarios of all other clusters and thanfiloe scenarios in
its own cluster. As a higl; ; means high similarity between two scenarios, aate with a lowRl value indicates
that its similarity to those in the same clustenigh, and its similarity to those out of the chrsis low.

A representative scenario of a cluster is thuseefias the one with the small&t and its probability of
occurrence is the percentage of the clustered sosrta the total. This definition also meets tharfcharacteristics
listed above. Specifically, the small&8tensures that a representative scenario is significdifferent from other
representative scenarios, and together the refetisenscenarios span the entire range of scenarios

IV. Numerical Results

A. Sourceof Data

To demonstrate the proposed methodology, the wettdtecast and traffic demand on June 18, 2013 were
analyzed: For each of the 21 SREF members, thdyhpreacipitation forecast, generated at 09:00Znfr0:00Z to
08:00Z next day is used to generate capacity lbssaiors and airports. Traffic demands were baseithe first
filed flight plans and simulated via the FCM’s queginetwork model under forecast weather constsakigure 1
illustrates the historical weather on this day ratarily developed over the airspace of the ARB@ECleveland
(ZOB), Chicago (ZAU), Indianapolis (ZID), New Yo(KENY), Boston (ZBW), Washington (ZDC), Atlanta (ZTL
and Jacksonville (ZJX). We will use FCM'’s simulattidelays of sectors and airports in this airspacedmputing
the impact metrics.
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Figure 1. CIWS Snapshot of Historical Weather aieJii8, 2013 22:00




The simulation delays produced by FCM are the lmarktatistics from the underlying queuing modelichh
can be interpreted as potential congestion worklgéglire 2 shows the spatiotemporal distributiohseator delays
from four selected scenarios. Visual inspectioalbthe scenarios indicates that the ZDC sectarsrarst heavily
impacted and that the impact becomes more seuererahe day. However, the coverage and magaitfd
impact differ among scenarios.

The impact metrics proposed in IlI.A can help nuigaly differentiate the impact by time or by spdoe
systematically comparing multiple scenarios whesual inspection becomes unmanageable. To prepadath for
running the clustering algorithm, a temporal impaetric and a spatial impact metric are computeddéators
delays while only five impact metrics are seledtmdhairport delays because of their significantiation among 21
scenarios. The selected airport delay metrics &A&'& arrival delay, EWR’s departure delay, EWR’s\al delay,
ATL’s departure delay, and ORD'’s arrival delay.

The radar plot in Figure 3 illustrates the impaetmes for all 21 SREF scenarios, where each mistric
normalized by its maximum value and mapped ontwaéesnf 0 to 100. Such a normalization step is s&ay as
the values of the various metrics can be drasyichiferent. For example, in this case study, graporal sector
delay metric, which is derived from 378 sectorsjlddvave a much higher value than the arrival detayric for
LGA. With the original scale, LGA arrival delays ghit not be as significant as sector delays, resuiti no
influence on scenario clustering, while in fact L@#ival delays would not only distinguish scenatiut also
signal the need for a ground delay program for LGA.
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Figure 3. Visualization of Clustering Data Prepai@dune 18, 2013

B. Clustering Results

Each weather-impact scenario is evaluated withctbseelay metrics and 5 airport delay metrics atidress the
differences between sector delays and airport delag apply a weighting fact6/A on sector delays when
computing similarity using Eq. (5). Operationalfierences could be reflected in this tradeoff coedfit as well.
TheS/A value represents the degree to which sector sl@i@yweighted more heavily than airport delayene
S/A = 1 means they are equally weighte}/A = 2 means sector delays are weighted twice as muahast
delays.

With S/A = 1, there are 10 clusters and thus10 representatar@sios identified, as illustrated in Figure 4(a).
Thus by clustering the 21 member ensemble in tlaismar, a significant reduction in weather futuseadhieved.
This reduction allows decision makers to focus amydistinctive but representative scenarios, gosgd to all 21
ensemble members.

It is expected that increasing the weighting oniaedelays would result in fewer clusters as déferes in
airport delays become less significant. WithA = 8, there are 8 representative scenarios identifiedtrated in
Figure 4(b). It can be observed that all the digtie contours regarding sector delays still exisile some

representatives in Figure 4(a) are now either ehest with other scenarios or are no longer idextifis the
representative scenario.
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Figure 4. Visualization of Representative Scenarios



C. Senditivity of Sector-Airport Delay Tradeoff

To understand the sensitivity of the tradeoff cioefht to the cluttering results, we evaluated hehanging the
S/A value changes the specific clusters and representaembers. Figure 5 depicts the evolution oftring
results ass/A increases. As expected, increasing the weighteatos delay metrics changes the number of the
resulting clusters as well as the representatigaagos.

WhensS /A changes from 1 to 2, the cluster of {4, 7, 8} apamits representative from Scenario 8 to Scenario
as shown in Figure 6(a). In addition, Scenario 48nicluded in another cluster and results in a ghaaf
representative, from Scenario 15 to Scenario 13yehn Figure 6(b).

Figure 6(c) shows that wheSly A = 4, the difference of EWR arrival delays between &ces 1 and 5 is not as
influential as a lowe§ /A. Thus, two scenarios are combined in the sameetlus

After S/A is above 4, there is no change in clusters an@septative selection.

S/A=1[2]9[11J14J16[aJ 781536 10]12]13]15[17]19]20]21]18]

Change
Group

SIA=2[ 29 [11[14]16[a7[8[1][5][3][6][10[12][13[15[17[19][20]21]18]

Change

Group

SIA=8[2] 9111416 4] 78] 1]5]3]6]10]12]13][15]17]18]19]20] 21|

Legend: Number for Scenario ID; color for cluster; boldfaced font for representative.

Figure 5. Sensitivity of S/A to the Clustering Riésu
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V. Summary

The ensemble members from the Short Range Ensérabdeast product can be used to represent a wide ra
of deterministic weather scenarios for NAS stratgdanning. The aggregation method for spatiotempdata is
employed to facilitate numerical comparison amorenarios. With the proposed representativity ingRi,
representative scenarios that meet preferred deaistics can be selected after clustering. Inntineerical
experiment, sector and airport delays are incotpdrato the proposed clustering approach, butrtddeoff
between the two delay categories may influencelirgtering results as well as the representatilezten.

For future work, impact modeling for airport capgcieeds to be improved for real-time decision supfAlso,
the performance of the clustering results couléxmmined with the traffic management initiativesigeed
specifically for the representative scenarioss Bxpected that the initiatives that work bestl@rrepresentative
scenarios would also have similar response ondieasios in the same cluster. Lastly, more weathgs can be
analyzed to fine-tune model parameters as welhdsnstand the scale of historical weather severity.
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