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1. INTRODUCTION 

Adverse
*
 weather remains the most disruptive 

constraint in the National Airspace System (NAS), 
contributing to the vast majority of impacts on air traffic 
operations that occur annually. These disruptions,  and 
thus the need to effectively predict the occurrence of 
adverse weather has motivated the development of 
multiple weather forecast systems and products which, 
due to the highly nonlinear nature of the atmosphere, 
have associated forecast errors and uncertainty. To 
date, operational use of these forecasts in making risk-
managed, air traffic impact mitigation decisions has 
been hampered by the lack of explicit, objective 
awareness of the weather forecast errors. Moreover, the 
availability of multiple deterministic and probabilistic 
forecast products, without accompanying, objective 
guidance for how to collectively use them to increase 
user confidence in the forecast through direct 
accountability of individual and relative forecast errors 
limits the use of multiple data sources to operational 
decision-making. These shortfalls erode abilities to 
define, coordinate, and execute effective Air Traffic 
Management (ATM) strategies, resulting in inconsistent 
solutions which do not take full advantage of the 
opportunities to mitigate impacts. 

With an initial focus on convective weather, forecast 
performance for several pertinent convective weather 
forecast systems, including both probabilistic (SREF, 
LAMP) and deterministic (HRRR), in three relevant ATM 
planning time horizons (tactical: 1-3 hour, strategic: 4-8 
hour, long-strategic: 9-12 hour) are quantified and 
evaluated. This was accomplished by first identifying 
and defining specific characteristics associated with 
probabilistic and deterministic forecasts that are 
meaningful from both a meteorological and ATM 
perspective. This performance was evaluated for a set 
of weather events from the 2012 convective weather 
season (April – September), classified by target 
convective characteristics - weather pattern, time of day, 
and region. Performance variability for each forecast 
product was assessed for all lead times within each 
planning window through comparison of results across 
each subset of classified weather events with common 
combinations of the target convective characteristics.  
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This study investigates the technical feasibility of 
combining pertinent convective weather forecast 
performance for the three target forecast products into a 
consolidated, more insightful, expression of forecast 
performance by planning period through development of 
an initial aggregate forecast performance summary 
“scorecard”.  The utility of this fully-populated 
performance “scorecard” for several realistic operational 
convective weather impact scenarios, along with its role 
in supporting development of a common, combined, 
convective weather prediction, will also be described.  
 

2.  MOTIVATION FOR AGGREGATE PERFORMANCE 

SUMMARY 

Key challenges in today’s ATM environment relative 
to convective weather impact management include: 
 

1. Lack of awareness of the historical 
performance of operational forecast products 
and associated level of uncertainty expected, 
given convective weather events of specific 
organization type, location, and relative time of 
occurrence; 

 
2. Inability to assess the relative strengths and 

weaknesses of the multiple forecast products 
available to decision-makers, as they may vary 
by specific convective weather impact 
scenarios and the planning lead-times; 

 
3. Inability to assimilate and combine multiple 

forecast inputs, accounting for error 
tendencies, and produce an operationally-
meaningful,  aggregated forecast product that 
leverages performance strengths from the 
individual, contributing predictions. 

   

Specifically, today’s traffic managers have access 
to several forecast products (Figure 1), each of which 
require excess effort to access, interpret, consider, and 
re-assess. Moreover, both traffic managers and 
supporting meteorologists are required to mentally recall 
(if possible) performance tendencies (e.g., forecast too 
late, too strong, too large of line?) given the skill of past 
predictions relative to a specific event expected during 
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the air traffic operation being managed. These 
subjective (and thus often inconsistent) considerations 
must be performed using forecast products that typically 
have no explicit information about forecast uncertainty 
that may help guide this practice. The mental model for 
these considerations becomes over-taxed when 
decision-makers then try to simultaneously consider 
these performance “adjustments” for multiple forecast 
products – and subsequently try to separate out “good” 
guidance from “poor” guidance before reaching an 
impact management decision; All to be repeated 
weather events and NAS constraints evolve during an 
operational day. 

Given the complexities in manually tracking and 
completing these forecast-to-impact assessment tasks, 
the most useful forecast information can (and do) go 
unused, while erroneous predictions can (and are) 
weighted too heavily. This results in inefficient weather 

impact mitigation plans and undesirable traffic 
management outcomes, often in the form of increased 
air traffic delays and operating costs and decreased 
customer (airlines, passengers) satisfaction. 
  This technical feasibility effort seeks to assess the 
viability of combining derived, operationally-relevant 
convective weather forecast performance results (which 
are approximated subjectively in the current ATM 
operation) from multiple, “stovepiped” products into 
aggregate forecast performance summary or 
“scorecard”. With this performance summary, 
operational users would then be able to explicitly 
consider the forecast performance tendencies – for a 
specific type of convective weather event – across 
multiple forecast products, for improved performance-
awareness and forecast uncertainty guidance.   
 

Figure 1. A sample of individual and unique convective weather forecast products available to operational 
decision-makers supporting air traffic management. 
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3.  PREVIOUS FORECAST PERFORMANCE 

ASSESSMENTS 

Progress in technology and science have greatly 
improved the ability to forecast weather, and 
meteorologists have made strides in reducing forecast 
uncertainty through enhanced observation sensing, 
numerical modeling, and data assimilation. However, 
the highly non-linear nature of the atmospheric system 
ensures that forecast errors and associated uncertainty 
will always exist. Conveying information on these errors 
and uncertainty to users who are making risk-based 
decisions with varying tolerance for cost/action allows 
them to weigh this weather forecast uncertainty 
information in their decision process, which effectively 
combines the expertise of both the forecaster and 
decision maker. Forecast errors not only impact these 
decisions and outcomes, but also the confidence of the 
decision maker in the forecast information itself. For 
these reasons, the American Meteorological Society 
(AMS) requested the National Research Council (NRC) 
to investigate the societal needs and potential benefits 
to using forecast uncertainty (NRC 2006). This NRC 
report, as well as one conducted by the AMS itself (AMS 
2008), determined that both forecasters and decision-
making users can benefit from the combined usage of 
probabilistic and deterministic forecasting to convey 
uncertainty information, and recommend improvements 
and research on effectively communicating this forecast 
uncertainty information to users. These reports led the 
AMS to develop an implementation plan for 
communicating forecast uncertainty to users as an 
important component of overall forecast information 
(Hirshberg et al. 2011). 

Several previous studies have examined similar 
forecast errors to those examined in this study, such as 
spatial errors associated with predictions of precipitation 
(Micheas et al. 2007), and their associated variability by 
relevant characteristics such as time of day, region, or 
weather type/morphology for predictions of precipitation 
or rainfall (Grams et al. 2005, Davis et al. 2006) and for 
the National Digital Forecast Database Thunderstorm 
Probability field (Lack et al. 2012b). Some examination 
of ATM-related convective weather forecast errors has 
been conducted with stratifications by some of these 
characteristics, such as planning window and 
geographic region (Lack et al. 2011, Lack et al. 2012a), 
but these have only minimally examined the error 
variability. The expression of errors in this study, 
combined with use of “intelligent” stratifications, 
potentially makes this a valuable addition to these 
previous studies. 

Eliciting relationships between convective weather 
forecast errors and complex ATM decisions is non-trivial 
due to the complexity of both. Investigation into use of a 
Bayesian decision network to predict ATM decisions 
based on an analysis of discretized meteorological input 
variables from historical ATM weather impact mitigation 
events has been conducted toward this goal (Pepper et 
al. 2003). Results from this investigation suggest that 
examining specific elements of strategic ATM decisions, 
such as the conveyance of weather uncertainty, may be 

a more effective method for extracting relevant 
information on ATM responses than examining the 
comprehensive and complex ATM process as a whole. 
Building on these results, this research will provide a 
targeted and comprehensive examination of forecast 
errors, each of which can then be related to specific 
ATM decisions and responses to explore straightforward 
methods for its conveyance to ATM decision makers. An 
earlier approach for translating strategic probabilistic 
forecast information into statements of air traffic 
constraints utilized the concept of a decision tree and 
converted the probabilistic forecast into discrete 
categories to characterize potential outcomes and 
identify logical ATM responses (Davidson et al. 2004). 
This work will build on this approach by improving the 
characterization of potential weather outcomes through 
improved depiction of forecast errors which can later by 
mapped to specific ATM decisions and decision points.  

Translation of forecast error and uncertainty 
information to air traffic decision-making is not unique to 
en route ATM responses, but is also necessary for 
terminal applications. Several studies have been 
conducted in the use of probabilistic forecasts of stratus 
cloud layer clearing for terminal-based traffic 
management decisions in San Francisco (Evans et al. 
2006, Cook & Wood 2009). Automation of translating 
stratus clearing probabilities into likely terminal 
management responses was examined in one of these 
studies through use of Monte Carlo simulations (Cook & 
Wood 2009). These simulations generated possible 
Ground Delay Program (GDP) responses and among 
these, highlighted the most cost-efficient GDP decision. 
The methods described in this work builds on these 
prior studies, and could be leveraged for terminal ATM 
decisions or extended to other types of forecasts 
beyond convective weather.   

A need also exists for forecast error and uncertainty 
translation to improve the efficiency of risk-based 
decision-making methodologies to applications outside 
of aviation: Lightning probabilistic forecasts of lightning 
are being used to aid decision-making for electrical 
systems protection in Brazil (Leite et al. 2007) and fire 
prevention (Gibson et al. 2008, Pence & Zimmerman 
2011). High seas probabilities are being used to predict 
pirate activity off Africa for military applications 
(Hirschberg et al. 2011, Petry et al. 2010).  Hurricane 
location probabilities are being used for evacuation 
decisions (Regnier & Harr 2006).  Finally, weather 
probabilities have been applied to space shuttle 
operations (Brody et al. 1997). The forecast error 
variability quantified here could be also be applied to 
these other application spaces. In turn, alternative 
decision-making considerations developed for these 
other operational domains, in context with potential 
error-awareness advancements from research 
presented in this report, can be evaluated for potential 
opportunities for enhanced air traffic management 
applications. 
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4.  EXPERIMENT DESIGN 

4.1  Target Precipitation Products 

As convective weather is the target of this study, 
precipitation-based products, both observed and 
forecast, are analyzed. Because multiple types of 
convective weather forecasts, including “radar-like” 
deterministic and probabilistic, provide different types of 
valuable predictive information and are relevant and 
useful to aviation, specific forecast systems of these two 
types are evaluated in this study based on their current 
and potential future prevalence as forecast decision aids 
for aviation planners and air traffic decision-makers. 

The target deterministic model for this study is the  
High Resolution Rapid Refresh (HRRR) model, 
generated by the Earth Systems Research Laboratory 
(ESRL). The HRRR is a high resolution (3 km) 
experimental forecast model capable of explicitly 
depicting convection which produces hourly fresh model 
realizations. The model receives its lateral boundary 
conditions from the Rapid Refresh (RAP) 13-km 
resolution model, inside which it is nested, and 
assimilates radar and satellite observations. This project 
focuses on the deterministic HRRR VIL forecast, given 
the pertinence of this product to aviation applications, as 
noted above. An overview of the HRRR forecast, also 
outlining forecasts improvements released during the 
2012 season which is the focus in the current study, can 
be found in Alexander et al. (2012) and Weygandt et al. 
(2012).  

The experimental Localized Aviation MOS Program 
(LAMP) convective forecast, developed and generated 
by the National Weather Service (NWS) Meteorological 
Development Laboratory (MDL), is one of the two 
probabilistic forecasts targeted in this study. It predicts 
convection over a 2-hour time valid time window based 
on Model Output Statistics (MOS) from the Global 
Forecast System (GFS) and the North American 
Mesoscale (NAM) numerical weather prediction models. 
A convective event is defined as the occurrence of a 
radar reflectivity value at or above 40 dBZ and/or one or 
more cloud to ground (CTG) lightning strikes within a 
2.5-km grid box. This product is issued hourly with each 
forecast valid over a 2-hour window out to 24 hours. 
Details on the methodology used to generate these 
probability forecasts can be found in Charba et.al (2011) 
and the general statistical approach for LAMP is 
described in Ghiradelli and Glahn (2010). 

The second target probabilistic forecast for this 
study is the Short Range Ensemble Forecast (SREF), a 
multi-model, multi-physics ensemble comprised of 21 
members produced by the National Centers for 
Environmental Prediction (NCEP). The calibrated SREF 
Thunderstorm Probability Forecast is produced by the 
Storm Prediction Center (SPC) through post-processing 
of both the SREF forecast and the 3-hour time-lagged 
North American Model (NAM) ensemble forecast. 
Forecasts are issued every six (6) hours (at 0300, 0900, 
1500, and 2100 UTC) for lead times every three (3) 
hours out to a maximum lead time of 87 hours using a 
40 km grid resolution. A thunderstorm event for this 

product is defined as having at least one lightning strike 
within a grid box. The calibration technique for these 
probabilities is described in Bright et al. (2005) and 
details on recent technique refinements and verification 
results are described in Bright and Grams (2009). 

The Multiple-Radar Multiple-Sensor (MRMS) VIL 
product, a 2D product derived from the 3D radar 
observations using a method described in Lakshmanan 
et al. (2006), will serve as the observation product in this 
study, against which all forecasts will be evaluated to 
compute the errors. The MRMS system, developed and 
produced by the National Severe Storms Laboratory 
(NSSL), leverages the overlapping WSR-88D NEXRAD 
radar coverage to generate a seamless, rapidly 
updating, high resolution 3D depiction of the radar data 
and objectively blends this radar information with other 
surface, upper air, and satellite observations. The 
update cycle for the MRMS VIL product is every five (5) 
minutes and its spatial resolution is 1 km. 
 
4.2  Convective Weather Characteristics 

In order to assess variations in forecast 
performance across target convective characteristics, 
historical convective weather events from the 2012 
convective season (April – September) have been 
identified and classified based on three target 
characteristics which are both meteorologically 
meaningful and applicable to ATM planning – weather 
pattern, region, and time of day.  

Weather patterns, in the context of this analysis, 
refer to the dominant mode of storm organization 
associated with convective weather events. To capture 
both a range in meteorological conditions (and 
associated atmospheric, thermodynamic, and kinematic 
variety found with different modes of convective weather 
organization) and a range in air traffic impact 
considerations and responses, three target weather 
patterns were chosen – air mass, organized storms with 
gaps, and line storms. 

To understand variations in forecast error due to 
the variations in  frequency and timing of the target 
weather pattern occurrence by location, the three types 
of weather patterns were classified according to their 
location in three (3) regions – Northeast, Southeast, and 
West (Figure 2). The target regions experience all three 
target weather patterns, but often have different 
meteorological forcing mechanisms which accounts for 
the seasonal differences in their timing in each region. 
Identification of three regions captures this spatial 
meteorological variability while ensuring a sufficient 
sample size among the events in each category (region-
pattern pair) for the project needs, which may not have 
been possible with more target regions.  

These regions were also chosen based on their 
unique ATM operational considerations which will also 
impact how a more robust characterization of forecast 
performance would be applied in each region. The 
Northeast region of the NAS includes resources and 
operations which are complex and densely-packed, and 
experiences high traffic volume, which can quickly 
become constrained and is likely to have cascading 
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impacts affecting other airspace regions. Because of 
this, the Northeast may be most sensitive to small 
variations in forecast performance and thus may require 
a more strict risk management approach to decision-
making given the forecast uncertainties. The Southeast 
region also experiences high traffic volume, but has a 
less complex network of resources enabling it to be less 
constrained than the Northeast. This combination may 
allow for more tolerance of forecast performance 
variability in this region. The West region, as a whole, 
experiences the lowest volume of NAS traffic and 
possesses the least constrained airspace resources. As 
a result, weather impact management accounting for 
forecast errors may be served by an alternative model 
for risk-aversion and forecast uncertainty tolerances.  
 

 

Figure 2. Three target regions defined for this study. 

The evolution and formation of weather patterns, 
along with air traffic volume and ATM constraints, can 
vary by the time of day. To capture potential variability in 
forecast errors by time of day, two unique time of day 
periods are used to classify convective weather events 
– overnight/morning (0300-1500 Z) and late 
morning/afternoon (1500-0300 Z). Daytime heating 
during the late morning/afternoon hours facilitates 
convective growth and storms of all patterns can often 
reach their peak intensity during this period. Storms can 
also form due to large scale forcing and persist through 
the overnight and morning hours. Air traffic demand 
peaks in the late afternoon and evening, making this 
period of the day potentially sensitive to convective 
weather constraints and associated forecast errors. 
However, during the early morning, many large airports 
experience high volume “pushes” indicating that 
weather constraints, potentially compounded by 
inefficient traffic management decisions made without 
better accountability of forecast error tendencies, could 
have cascading effects into the rest of the day 
depending on the region. 

Because the applicability and utility of forecast 
performance information to ATM planning varies by 
planning period, three planning lead time windows have 
been defined here – tactical (1-3 hours), strategic (4-8 
hours), and long-strategic (9-12 hours). These planning 
periods have been defined based on common decisions 
periods for ATM planning. Forecast performance 
variability was evaluated within each of these planning 
periods across the target convective characteristics. 
Stratifying in this manner facilitates  assessing forecast 
performance in the context of specific operational needs 

in each planning period and will thus facilitate intelligent 
aggregation.  
 
5  FORECAST PERFORMANCE EVALUATION 
METHODOLOGY 
 

The availability of both probabilistic and 
deterministic  forecasts is important for ATM 
applications and decision-making as they both provide 
unique and complimentary forecast information that 
together provides a robust characterization of the 
predicted convective mode, intensity, scale, and 
likelihood. While information on these types of 
characteristics could be gleaned from converting a 
probabilistic forecast into a dichotomous convection 
prediction, a deterministic forecast is more readily 
interpreted by ATM decision makers largely because of 
the extent to which these forecasts have been used to 
support ATM operations historically. Therefore, full 
characterization of forecast performance requires 
consideration of characteristics of each type.  
 
5.1  Evaluating Deterministic Forecast Performance 

 
Expectations and predictions of significant 

convective weather coverage are critical input for ATM 
decision-making. Traffic managers routinely make 
decisions about available fix, route, sector, and en route 
center capacity degradation (and thus, the need for 
airspace management responses should demand-
capacity imbalances result) based upon the expected 
coverage and extent of storms in and across key 
airspace regions. As a result, the ability to effectively 
monitor, and if needed, act on weather constraints that 
result in airspace congestion or controller workload 
conditions is sensitive to how well the coverage 
(“weather impact region”) of convective weather 
elements and systems can be predicted. Lack of 
knowledge of coverage forecast reliability will likely 
result in under or over-utilization of a given NAS 
resource.  

Related to this of course is storm intensity and the 
ability of traffic managers to anticipate that storms 
affecting key airspace regions will be strong enough to 
require pilot avoidance and deviations and will limit 
capacity available to serve pending traffic demand. User 
confidence in anticipated storm intensity, above or 
below key operational thresholds (e.g., Level 3 
convection) enables more proactive and aggressive 
impact mitigation actions that effectively reduce delay, 
controller workload, costs, and safety concerns. Traffic 
management decisions derived from poorly performing 
storm coverage or intensity forecasts can often result in 
increased impacts and operational disruptions. 

Storm coverage and intensity characteristics were 
assessed for both MRMS observations and 1-12 hour 
lead time HRRR forecasts of classified April – 
September 2012 convective weather events within 
appropriately sized hexagonal cells across the analysis 
domain (CONUS). Storm coverage is defined here as 
the percentage of the HRRR or MRMS grid cells within 
a hex cell that have VIL values at/above 3.5 kg m

-2
, 
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equivalent to Video Integrated Processor (VIP) Level 3.  
VIP Level 3 is recognized as the intensity threshold at 
which convection may first be considered hazardous – 
thus requiring pilot avoidance (Robinson et al. 2002). 
Forecast performance at predicting storm coverage is 
quantified as the difference between the HRRR and 
MRMS coverage within corresponding hex cells. 

To determine appropriate hex cell sizes for each 
target planning period, a sensitivity study was 
conducted to assess the distribution of these coverage 
differences for a range of operationally meaningful hex 
cell sizes for forecasts in each target planning period. 
The most appropriate hex cell size in each planning 
period was determined as that which was large enough 
to provide a smooth, monotonic distribution in coverage 
differences while being small enough to produce a 
sufficient range in coverage differences. The final hex 
cell sizes in each planning period are: 

 

 Tactical (1-3 hour) – 40 km 

 Strategic (4-8 hour) – 70 km 

 Long-Strategic (9-12 hour) – 70 km 

 
Understanding the errors associated with intensity 

are important to ATM decision-making as intensity is an 
important factor in the likelihood of deviations. Despite 
the assertion in standard operating procedures and pilot 
handbooks that any VIP greater than Level 3 should be 
considered hazardous convection and thus avoided, 
aircraft are often observed to penetrate storms with 
intensity greater than this threshold. This behavior 
motivates the evaluation of storm intensity at the larger 
end of the VIL distribution, which may be more crucial in 
determining the likelihood of aircraft deviation than the 
“average” or background VIL values. For this reason, 
the 95th percentile was chosen to characterize these 
most intense VIL values from distributions of non-zero 
VIL within hex cells in both the HRRR forecast and 
MRMS observation grids. Forecast performance at 
predicting storm intensity is quantified as the difference 
between the 95th percentile VIL value in the forecast 
and the 95th percentile VIL value in the MRMS 
observation grid. 
 
5.2  Evaluating Probabilistic Forecast Performance 
 

Unlike deterministic forecasts, which provide radar-
like depictions of future weather including specific 
attributes like intensity and size, probabilistic forecasts 
predict the likelihood that any type of convection will 
occur in a given grid box. Due to this fundamental 
difference, these forecasts do not have the same types 
of characteristics (intensity, coverage) as a deterministic 
forecast and thus a unique set of performance metrics 
are required. Within most operational domains of 
interest (e.g., air traffic management), the utility of 
weather forecast probabilities can be optimized through 
the development and accompaniment of functional “rule 
sets” that translate (even low) weather probabilities into 
response thresholds, accounting for domain-specific 
forecast needs, risks, and decision costs. Moreover, a 
formal method for devising probabilistic rule sets can be 

optimized by targeting key forecast performance 
characteristics that, when translated, provide 
specialized decision support for specific domain needs. 
Two such performance characteristics pertinent to 
convective weather probabilistic forecasts, which will 
provide the basis for probabilistic forecast performance 
quantification, are reliability and skill (Wilks 2005).  The 
errors associated with these characteristics will be 
quantified and assessed for both target probabilistic 
forecasts – the SREF thunderstorm probability and the 
LAMP convection probability. 

The reliability of a probabilistic forecast refers to 
how closely the forecast of an event (in this case, 
convection) corresponds to the actual event occurrence 
frequency and is a valuable property of any probabilistic 
forecast (AMS 2008). Similar to bias for a deterministic 
forecast, which describes the magnitude of over or 
under-forecasting storm intensity, understanding the 
reliability of a probabilistic forecast will impact what 
probability values are actionable in ATM. A perfectly 
reliable forecast is one where the forecast probabilities 
verify with the exact same frequency as climatology. For 
instance, a 40% probability would verify (with convection 
occurring) 40% of the time.  

To facilitate interpretation of the probabilistic 
forecast reliability, the weighted mean difference 
between a forecast and the actual observed frequency 
of convection was computed for all classified 2012 
convective weather events. The difference between 
forecast probability values, binned in 5% increments, 
and the actual frequency of convection occurrence 
across all bins was first calculated. These differences 
are then averaged across all bins and weighted by the 
total  number of predictions in that bin giving the most 
weight to the most frequently issued probability values.  

 

                        
                                              (1) 

 
This value reflects the average amount of over or 

under-forecasting (bias) that was observed with the 
probabilistic forecast for a given combination of 
convective weather characteristics.  

The forecast skill is commonly quantified using a 
Relative Operating Characteristic (ROC) diagram 
(Mason 1982), which plots the probability of detection 
(POD) against the false alarm rate (FAR) for a given 
probabilistic forecast over a historical evaluation period 
using incrementally increasing probability thresholds 
used to define the prediction of an event., defined here 
as a forecast probability exceeding the incrementally 
varying probability threshold. The POD, or true positive 
rate, is defined as the ratio of hits to the total number of 
observations where the event occurred, as 

 
                 POD = YY / (YY + NY)                         (2) 
 

where YY indicates the number of true positive 
forecasts and NY indicates the number of false negative 
forecasts for a given probability threshold. The FAR, or 
false positive rate, is defined as the ratio of false alarm 
forecasts to the total number of observed non-events, 
as  
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                FAR = YN / (YN + NN)                          (3) 

 
where YN indicates the number of false positive 
forecasts and NN indicates the number of true positive 
forecasts. For each threshold probability from 0-100% in 
1% increments, a unique POD and FAR are computed 
based on that threshold and plotted on the ROC 
diagram (Figure 3). 
 

 
Figure 3. Sample ROC diagram for LAMP 2-hr 

forecasts (curved line) and no skill line (dark purple 
line). 

 

The overall skill of the ROC curve, across all 
probability thresholds, can be evaluated by computing 
the Area Under the Curve (AUC) which quantifies the 
likelihood that a given forecast can accurately produce 
higher probabilities for events and lower probabilities for 
non-events. In other words, it describes the probability 
that a randomly selected forecast probability value 
chosen from the pool of those that correctly predicted 
the occurrence of convection (an event) will be greater 
than a randomly selected forecast probability value 
chosen from the pool of those that correctly predicted 
the non-occurrence of convection (non-events). The 
AUC for a forecast with perfect skill is 1.0, indicating a 
perfect 100% chance that the frequency of convective 

events varies with the forecast probability and of issuing 
greater probability values for events than non-events. 
On the other hand, the AUC for a forecast with no skill is 
0.5 (the area under the diagonal “no skill” line on the 
ROC diagram), indicating that for a randomly selected 
pair of probabilities (one from the pool of events and 
one from non-events), the probability value associated 
with convection (event) is equally as likely (50%) to be 
larger than the one associated with the lack of 
convection as it is to be smaller, reflecting a complete 
lack of skill. These AUC values were computed for all 
classified 2012 convective weather events for all LAMP 
and SREF forecasts in each planning period.  
 
6. IDENTIFYING AGGREGATE FORECAST 
PERFORMANCE 

 
To collect, organize, and visualize the overall and 

aggregate forecast performance of each considered, 
individual convective weather forecast by key 
operational weather event characteristics, a summary 
table is constructed to consolidate historical forecast 
errors (Table 1). In this summary table, the forecast 
performance category is determined by placing a single 
summarized metric value specific to that forecast 
characteristic into predefined ranges which will be 
defined in subsequent sections. Each entry is 
determined independently to guide targeted 
interpretation and potential forecast performance 
adjustments.  

An indication of over or under-forecasting for at 
least one forecast characteristic for each forecast model 
(reliability, intensity errors, and coverage errors) is also 
included in performance summary table entries as a 
positive or negative sign, reflecting whether the 
forecasted values were typically greater (“+”) or less 
than (“-“) the observed. Where both performance values 
are available (skill category and bias) for a forecast 
characteristic, these categories and “+/-“ values would 
be used in tandem to guide interpretation and potential 
forecast performance adjustments  of each forecast 
product. “Good” (“poor”) error entries would require 
minimal (significant) uncertainty accountability and/or 
potential performance-adjustments in the direction 
dictated by the “+/-“.  
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Table 1. Aggregate forecast performance summary table. 

 
 

 
6.1  Probabilistic Forecast Performance Summary 
Representation – SREF, LAMP 
 

To aggregate SREF and LAMP forecast skill in 
each target planning period, the Area Under the (ROC) 
Curve (AUC) values computed for each event type were 
placed into three performance categories (Table 2). To 
compensate for the upper limit of possible skill (AUC) 
values of 1.0 being not realistically attainable, as it 
would indicate that a forecast can always generate 
higher (lower) probabilities when convection does (does 
not) occur with perfect accuracy, the ranges for the top 
two performance categories (good, moderate) are wider 
than for the lowest (poor). The minimum possible skill 
(AUC) value of 0.5 indicates that the likelihood of a 
forecast producing higher (lower) probabilities when 
convection does (does not) occur is only 50%, or 
equivalent to a coin flip, meaning it has poor skill and 
little potential up-side from error-adjustment of 
probability values (reliability). As with most forecast 
performance category definitions in this technical 
feasibility study, each of these thresholds can be 
considered initial settings, which can be modified, 
parameterized, and even made to be dynamic, with 
more research and additional operational 
considerations. 

 
 
 

Table 2. Skill metric ranges for each probabilistic 
forecast performance category. 

 Skill (AUC) 

Good 0.8-1.0 

Moderate 0.6-0.8 

Poor 0.5-0.6 

 
 
The weighted mean difference values computed for 

all classified 2012 convective weather events in the 
three target planning periods were also placed into three 
performance categories containing a bias indicator 
denoted as a “+/-“ that was not included in the skill 
entries (Table 3). The ranges were selected based on 
the original binning of the probability values for analysis 
in 5% increments and the corresponding “+/-“ value is 
based on the sign of the weighted mean difference 
value. For example, the average weighted mean 
difference statistic for strategic LAMP predictions of 
Northeast line storms occurring from 15-03Z is +0.17, 
meaning that a given forecast probability value, on 
average, is 17% above the actual frequency of 
convection occurrence. This indicates that these 
strategic LAMP predictions over-forecast the expected 
frequency of convection occurring for this event type by 
at least 10%, so this aggregate performance summary 
entry includes a red “+”. 
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Table 3. Probabilistic forecast reliability 
performance category ranges for weighted 
difference values. 

 Over-Forecast 
“+” 

Under-Forecast 
“-“ 

Good 0 to 5% -5% to 0% 

Moderate 5% to 10% -10% to -5% 

Poor > 10% < -10% 

 
 

6.2  Deterministic Forecast Performance Summary 
Representation – HRRR 
 

The full range of potential storm coverage 
differences (forecast-observed) are placed into 
categories representing good, moderate, and poor skill 
for both over-forecast (“+“) and under-forecast (“-“) bias 
indicators (Table 4). The coverage difference ranges in 
each category were determined through assessment of 
storm coverage differences among synthetic storms of 
both air mass and line storms to represent operational 
tolerance to these coverage differences. 
 
Table 4. Coverage difference ranges for each 
performance category. 

 Over-Forecast “+” Under-Forecast “-“ 

Good 0 to 10% -10% to 0% 

Moderate 10% to 30% -30% to -10% 

Poor > 30% < -30% 

 
To determine the aggregate forecast performance 

summary coverage entry for a given combination of 
convective characteristics and planning period, the 
percentage of errors falling in each of the six coverage 
difference ranges (represented in each performance 
category) is first computed. For tactical predictions of 
line storms in the West occurring from 15-03Z, coverage 
differences were observed in all six categories (Table 
5). The coverage entry category is determined to be that 
which contains the greatest percentage of all coverage 
differences. Thus, the coverage entry in the aggregate 
forecast performance summary for West line storms 
occurring from 15-03Z would be yellow “+”, indicating 
that the majority of coverage differences (40% of all) 
associated with predictions of this convective weather 
scenario reflect moderate over-forecasting (10-30% 
coverage). 

 
Table 5. Percentage of all coverage differences in 
each category for predictions of West line storms 
occurring from 15-03Z. 

 Over-Forecast 
“+” 

Under-Forecast 
“-“ 

Good 1% 1% 

Moderate 40% 29% 

Poor 15% 14% 

 

In order to better represent storm intensity 
differences (forecast – observed) for each combination 
of convective characteristics in an operational context in 
the aggregate forecast performance summary, these 
values are expressed categorically through two critical 
Video Integrated Processor (VIP) levels: Level 3 and 
Level 5. VIP Level 3 corresponds to the minimum storm 
intensity that should be avoided according to the pilot’s 
handbook but is sometimes still traversed by air traffic, 
and VIP Level 5 corresponds to the storm intensity that 
the majority of commercial air traffic will more certainly 
avoid. Specifically, these intensity aggregate forecast 
performance summary entries categorically (good, 
moderate, poor) reflect the average difference in VIP 
levels between HRRR forecast and observation across 
all hex cells in a given event category. As with the 
previously described coverage differences, intensity 
differences in the aggregate forecast performance 
summary also include an indication of over (“+”) or 
under (“-“) forecasting of VIP level by the HRRR.  

To generate these entries, VIL distributions from 
within hex cells were first converted to VIP levels using 
the commonly accepted ranges (Table 3 9). When the 
HRRR forecasted VIP Level 3 or VIP Level 5 in a hex 
cell for a given event category, the percentage of hex 
cells that were observed at each VIP Level (0-6) was 
computed to characterize the distribution of observed 
precipitation intensities when these forecasts were 
issued. 

 
Table 6. Conversion table from VIL(kg m

-2
) to VIP 

Level (from Troxel and Engholm 1990).  

 
 
In order to consolidate these distributions of 

observed intensity into one forecast aggregate 
performance summary entry for VIP Level 3 and VIP 
Level 5, the average frequency-weighted intensity 
difference is computed as the difference between 
forecasted and observed intensity levels. For all 
possible forecast-observed VIP Level pairs, the intensity 
difference in VIP levels is multiplied by the frequency 
with which that pair occurred, as 

 
                                            (4) 

 
For some event categories and planning periods, 

the HRRR forecasted either VIP Level 3 or Level 5 too 
infrequently for the 2012 convective season events 
analyzed in this study to generate a distribution of 
observed VIP Levels. To ensure a sufficient sample size 
from which to generate aggregate performance 
summary entries, weighted intensity difference values 
were only computed if at least ten (10) hex cells 
contained VIP Level 3 or VIP Level 5. Entries for event 
categories not meeting this criteria are shown as empty 
in the aggregate forecast performance summary. 

These weighted VIP intensity differences are 
subsequently placed into performance categories for 
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each combination of convective characteristics and 
planning period, including an expression of forecast 
bias, based on operational tolerance to various error 
ranges (Table 7). Any weighted differences that are less 
than one VIP level are considered “good” and 
operationally tolerable as they require no performance-
adjustment, differences of one VIP level are considered 
“moderate” and marginally-tolerable operationally, and 
differences of 2 VIP levels or more are considered 
“poor” and would require significant performance-
adjustment. Because the range of intensity differences 
in the good category are less than 1 VIP level for either 
over or under-forecasting (“+/-“), any aggregate forecast 
performance summary entry in this category would not 
require any VIP based performance-adjustment. In 
these situations, the “+/-“ bias indication is retained to 
provide enhanced forecast performance awareness of 
the underlying VIL distributions which may be leveraged 
when combining with other forecast products in 
generating a common, combined convective weather 
forecast region. 

 
Table 7. Weighted VIP difference ranges for each 
aggregate forecast performance summary category. 

 
Over- Forecast 

“+” 
Under-Forecast “-

“ 

Good 0 to 1 -1 to 0 

Moderate 1 to 2 -2 to -1 

Poor > 2 < -2 

 

6.3  Aggregate Forecast Performance Summary 

 
The completed aggregate forecast performance 

summary table for convective weather provides 
guidance on uncertainty-awareness and potential error-
adjustments based on the target error types and 
included forecast products (Table 8).  This information, 
derived from detailed and focused forecast performance 
analyses and characterizations, could in turn support 
the development of a common, combined convective 
weather  prediction for ATM decision-makers. It also 
provides information on (a) the varied performance of an 
individual forecast product given different types of 
operationally-relevant weather events (i.e., by reading 
the summary table down the columns for an individual 
forecast) and (b) the relative performance of each 
forecast model, the latter of which can guide the relative 
weighting of each model in a  common, combined 
forecast “polygon” (i.e., by reading the summary table 
across the rows to account for all forecasts for a given 
weather event type). For example, long-strategic (9-12 
hour) LAMP forecasts of Southeast line storms 
occurring from 15-03Z have both poor reliability and skill 
while the HRRR is good at predicting storm intensity 
and has moderate skill in storm coverage prediction. 
This suggests that the LAMP should be deemphasized 
and the HRRR emphasized in generating the combined 
convective prediction for this event scenario. 
 
 
 
 

Table 8. Aggregate forecast performance summary table populated for target forecast products.
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Because each forecast performance aggregate 
summary entry was evaluated independently, a given 
forecast model may have different performance 
categories for multiple forecast characteristics. For 
example, the LAMP has good skill at tactical predictions 
of West line storms occurring from 15-03Z while having 
poor reliability, greatly over-forecasting probability 
values (Table 8). The gross over-forecasting indicates 
that the observed frequency of convection is at least 
10% lower than indicated by the forecast probability 
values, so a probability forecast value of 40%  for this 
type of event would have an actual frequency of 
convection below 30%. Despite the fact that the forecast 
probability values have limited accuracy in representing 
the expected convection likelihood,  the forecast does 
have good skill for this type of event which indicates that 
it can effectively discriminate between events and non-
events, predicting greater (lower) probability values 
where convection does (does not) occur.  

The aggregate forecast performance summary 
helps to improve understanding of how forecast 
performance may vary by lead time, which in turn may 
facilitate improved operational interpretation of these 
forecasts from the longer (advanced planning for 
significant weather-induced congestion events) to the 
shorter (tactical management of route, fix, airport 
impacts) lead times. A summary table interpretation 
example of forecast performance considerations by 
planning lead time is as follows: 

 
• For long-strategic and strategic predictions 

of organized storms with gaps in the West occurring 
from 15-03Z (see Table 8), both the LAMP and SREF 

have moderate skill while the HRRR moderately under-
forecasts the spatial coverage of the storms, depicting 
them as 10-30% smaller than observed. The SREF has 
good reliability for this event scenario, only slightly 
under-forecasting the likelihood of convection (< 5%) 
while the LAMP moderately over-predicts the convection 
likelihood (5-10%). Therefore, in considering the 
performance categories of all three forecast products, 
the HRRR and SREF would likely receive more 
emphasis than the LAMP in generating a common 
convective weather prediction region and require little 
performance-adjustment .  

 
• As forecast lead times progress into the 

tactical planning period (1-3 hr) for these 
predictions of West organized storms with gaps 
occurring from 15-03Z, the forecast performance 

summary entries for several of the forecast 
characteristics change, indicating that they must be 
interpreted and potentially combined differently closer to 
the time of convective constraints(see Table 8). Unlike 
in the strategic and long-strategic planning periods, 
tactical LAMP forecasts show good skill in predicting 
these events, indicating that a LAMP forecast should be 
emphasized much more strongly in this planning period 
than in the longer planning periods where it had poor 
skill. However, due to its poor reliability, the forecast 
probabilities would need to be adjusted downward at 
least 10% to compensate for its over-prediction and thus 

more accurately reflect the expected convection 
likelihood. On the other hand, the HRRR shows a 
reduction in skill at predicting VIP Level 5 intensity in the 
tactical planning period, moderately over-forecasting 
these intensities (1 VIP level) where there was only 
slight over-forecasting in the strategic planning period. 
The HRRR coverage errors also change signs from the 
strategic to tactical planning periods, so storms depicted 
in tactical predictions are now 10-30%  larger than 
observed.  

In event scenarios like this, the concise guidance 
available in the aggregate performance summary 
facilitates improved performance awareness of each 
forecast model individually as well as enables 
understanding of relative emphasis across the various 
forecast models.  

The aggregate performance summary also 
facilitates enhanced performance-awareness and 
interpretation of each forecast model for a given lead 
time forecast when different patterns of convection are 
predicted to occur in separate regions. A summary table 
interpretation example of forecast performance 
considerations given different this type of scenario is as 
follows: 

 
• A common convective weather scenario in the 

spring and early summer is a line of convection in the 
Northeast and air mass storms in the Southeast 
occurring between 15-03Z. According to the forecast 

performance summary table (Table 8), the performance 
of each individual model product would be different for 
both weather patterns. 

 
• For a strategic forecast of this type of 

convective weather scenario, the HRRR has similar 
performance for both the Northeast line and the 
Southeast air mass storms as both would require a 

reduction in spatial extent of storms to compensate for 
moderate coverage over-forecasting (10-30%). 

 
• There is insufficient data to guide improved 

performance awareness of VIP Level 5 storm intensity 
predictions for the Southeast air mass storms, but any 
high intensities in the Northeast line would need to be 

reduced to compensate for the moderate over-
forecasting of these intensities (reduce by 1 VIP level). 

 
• Both probabilistic forecasts have different 

performance for the two types of weather events. While 
the SREF has moderate skill for both the Northeast line 
and Southeast air mass storms, it moderately (5-10%) 

under-predicts the likelihood of convection associated 
with Southeast air mass storms and only slightly (< 5%) 
under-predicts the convection likelihood for Northeast 
line storms. 

o This means that when interpreting a 
forecast for this broad (overall) convective weather 
scenario, the actual likelihood of convection is 
slightly greater than the probability values predicted 
in the Northeast and moderately greater than those 
predicted in the Southeast. 
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• The LAMP greatly over-predicts (> 10%) the 
likelihood of convection for both Northeast line storms 
and Southeast air mass storms, so the actual 

convection likelihood is far lower than the predicted 
probability values. However, the LAMP also has poor 
skill in predicting Southeast air mass storms, meaning it 
has limited ability to issue greater (lower) probability 
values where there is (is not) actual convection, while 
having moderate skill and thus potential utility for the 
Northeast line storm prediction. This suggests that the 
LAMP should be deemphasized in the Southeast 
relative to the other two forecast models but could 
provide useful information when combined with the 
HRRR prediction in the Northeast for this convective 
weather scenario.  

 
There is also operational utility of the aggregate 

forecast summary table when all available forecast 
products have limited capabilities to accurately predict 
event characteristics for a given weather impact 
scenario. When this occurs, the overall information 
highlighting prediction shortfalls from multiple forecast 
products may help to manage risk and drive cautious 
and iterative impact planning which is more appropriate 
than aggressive tactics given awareness of the elevated 
weather uncertainty.  A summary table interpretation 
example of forecast performance considerations given 
different this type of high uncertainty scenario is as 
follows: 

 
• Probabilistic predictions of Southeast line 

storms occurring from 03-15Z for tactical planning 
periods are poor for both reliability (over-forecasting by 

more than 10%) and skill, suggesting that the LAMP and 
the SREF forecasts should be de-emphasized in this 
planning period (Table 3 13).  

 
• There was an insufficient amount of historical 

data to guide the assessment of HRRR intensity 
performance, at either VIP Level 3 or 5, so no guidance 
on potential intensity performance-adjustment is 
available. 

 
• The  HRRR moderately over-predicts (10-30%) 

the spatial coverage of these types of storms. 
 
• The poor performance of both LAMP and 

SREF along with the marginal HRRR performance 
(what is available) suggests forecast information for 
tactical impact planning can be highly uncertain and 
decision-makers should account for this when 
considering impact mitigation solutions.  

 
Development of this preliminary aggregate forecast 

performance summary, along with its potential utility in 
realistic operational convective weather constraint 
scenarios discussed in this section, demonstrate that it 
is technically feasible to summarize and combine 
pertinent convective weather forecast performance 
metrics into a consolidated expression of forecast 
performance to enhance operational performance-
awareness. While this preliminary aggregate 

performance summary includes the specific convective 
weather characteristics previously identified in this study 
to demonstrate technical feasibility, these parameters 
could be expanded and extended in future analysis to 
include more forecast characteristics, additional 
convective weather characteristics, additional weather 
forecast products, and predictions of other weather 
phenomena, such as surface winds, ceiling and 
visibility, winter-weather (or specific types), etc. 
 
7.  SUMMARY 
 

This study investigated the technical feasibility of 
combining forecast performance relative to previously 
identified types of pertinent convective weather forecast 
characteristics into a consolidated, more insightful, 
expression of forecast performance. This has been 
demonstrated by combining and preliminarily 
thresholding performance characteristics from three 
forecast products targeting operationally-relevant ATM 
planning periods to form an initial aggregate forecast 
performance summary “scorecard” for improved 
forecast uncertainty-awareness. This “scorecard” 
contains a single categorical expression, or entry, 
denoting forecast performance associated with each 
forecast characteristic for all convective weather 
scenarios (weather pattern, time of day, region) and 
operational planning periods (tactical, strategic, long-
strategic). For each forecast model product included in 
this study (HRRR, SREF, LAMP), aggregate forecast 
performance summary entries for one forecast 
characteristic include a combined expression of 
categorical performance (good, moderate, poor) and 
forecast bias (over or under-forecasting). This guidance 
enhances performance-awareness and operational 
interpretation of these forecasts.  

The utility of fully-populated aggregate forecast 
performance summary table was described for several 
realistic operational convective weather impact 
scenarios. This guidance could support enhanced 
operational interpretation of target forecast products 
across planning periods, from consideration of capacity 
reduction at long lead times to potential blockage of air 
routes at short lead times as well as across convective 
weather scenarios, such as for a forecast predicting 
various weather types in different regions. There is also 
operational utility of the aggregate forecast summary 
table when all available forecast products have limited 
capabilities to accurately predict event characteristics 
for a given weather impact scenario. When this occurs, 
the overall information highlighting prediction shortfalls 
from multiple forecast products may help to manage risk 
and drive cautious and iterative impact planning which is 
more appropriate than aggressive tactics given 
awareness of the elevated weather uncertainty.  

It was also demonstrated that the aggregate 
forecast performance information may support 
development of a common, combined, performance-
adjusted convective weather prediction. As a result, this 
technical feasibility study is an explicit substantiation for 
the concept of an aviation weather “Single Authoritative 
Source” (SAS) – where the SAS receives multiple 
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weather data inputs and then outputs an appropriate, 
unified weather solution to ATM users seeking to 
address specific weather constraint conditions.  

The improved forecast performance awareness 
provided by this operations-relevant performance 
analysis, the aggregate performance summary table, 
and the concept for a consolidated forecast output 
based on this information, is useful to both: 
 
1. ATM decision-makers considering explicit weather 
impact management strategies and actions and; 
 
2. Aviation meteorologists supporting the air traffic 
mission and counseling traffic managers about the 
validity of operational forecast products given specific 
weather impact events.  
 

Moreover, opportunities to “performance-adjust” 
both probabilistic and deterministic predictions of 
operationally-relevant convective weather 
characteristics may support more appropriate weather 
forecast usage by automated DSTs seeking out critical 
thresholds for impact “alarming” which may trigger 
specific ATM alerts or impact mitigation 
recommendations. 
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