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1. INTRODUCTION 
 
The future of the world’s energy system will 

increasingly depend upon renewable energy sources 
due to the limitation of fossil fuel resources and their 
influence on global pollution and climate change.   
Renewable energy sources, including solar power, can 
provide substantial power supply to the grid; however, 
they are also highly variable sources of energy.  
Changes in weather conditions can cause rapid 
changes in power output, thus creating a challenge for 
utility companies to effectively use these renewable 
energy resources. Lew et al (2012) showed that the 
variability of power output was higher with high 
penetrations of solar than with higher penetrations of 
wind.   

The integration of solar energy into existing energy 
supply systems will rely on accurate short term 
predictions to allow balancing authorities to manage the 
grid efficiently.  In the forecast time frame from minutes 
to several hours, load following is accomplished by a 
system dispatching its units to account for variations 
from the planned schedule.  For the very short term 
range in the seconds to minutes time frame, which 
meteorologists commonly refer to as nowcasting, 
regulation describes the fast response of generators to 
the variability of renewable energy sources of energy 
(Ibanez et al 2012). Short term forecasting is defined 
here as time scales ranging from nowcasting up to three 
hours ahead.  

There have been multiple recent studies focused on 
the prediction of solar radiation or solar power. Mellit 
(2008) provides a summary of techniques for 
forecasting solar radiation and states that 37 studies 
have used Neural Networks in the modeling and 
prediction of solar radiation with the second most 
frequent method, Fuzzy Logic, used five times. More 
recently, Martin et al. (2010) showed a final model 
based on Artificial Neural Networks (ANN) improves 
accuracy 4.84% to 25.58% over persistence for half-
daily radiation forecasts. Fernandez et al (2014) 
concluded that the ANN model has accurate 
performance for days characterized by direct irradiance 
(clear days) and for days characterized by diffuse 
irradiance (cloudy days).  Chu et al. (2013) used an 
ANN with sky image processing to predict 1 minute 
average DNI for time horizons of 5 and 10 minutes.   
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Another short term prediction study used a 
regression technique on all-sky images to predict solar 
radiation five minutes in advance with a mean absolute 
error of around 22% (Fu and Cheng, 2013).  
Autoregressive techniques have also showed solar 
power prediction capability, with Bouzerdoum et al 
(2013) using a hybrid seasonal autoregressive moving 
average and support vector model to predict hourly 
power output. 

The goal of this study is to predict the clearness 
index (Kt), which is the ratio of the observed Global 
Horizontal Irradiance (GHI) at the surface to the Top Of 
Atmosphere (TOA) expected GHI.  
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The prediction of Kt is important for utility 

companies because it quantifies the amount of 
attenuation from aerosols and clouds at a particular 
location. These predictions are made location specific 
based on a time series of GHI observations. Short term 
predictions are made for 15 minute intervals out to 180 
minutes.  The initial test location is the Table Mountain 
SURFRAD site in Boulder, Colorado. The first step in 
the forecast procedure is to classify the forecast 
initialization time as clear, cloudy or partly cloudy.  The 
second step is to build models independently on each 
cloud regime dataset.  The models tested are 
persistence (baseline technique), first and second order 
Autoregressive (AR) models, and the non-linear ANN. 
The ANN model is also used to predict the variance of 
the clearness index, thus providing a measure of 
potential power variability. 

In section 2, we discuss the goals of the project. In 
section 3, we discuss the datasets: the SURFRAD 
observing system and NREL Solar Position and 
Intensity Calculator. In section 4, we summarize the 
methods of cloud regime identification.  In section 5, the 
forecasting techniques of autoregression and ANNs are 
described. In section 6, we present the results and in 
section 7 conclusions and future work are described.  

2.   PROJECT GOALS 
 
The goal of this work is to develop a statistical 

forecast of short term solar radiation.  Our methodology 
begins by first identifying the cloud regime and then 
using statistical learning techniques to improve upon 
persistence forecasting.  Figure 1 shows the overall 
process design. The first step is to input the data used 
for building the models; the solar geometry data and the 
time series of GHI observations. The second step is to 
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identify the cloud regimes by computing the clearness 
index and partitioning the data based on clearness 
index thresholds. The third step is to build models 
independently on each cloud regime as well as on the 
entire dataset.   

 

 
Figure 1. Process Design from data input, classifying 
cloud regimes, applying models, to making the 
clearness index forecast. 

By identifying the cloud regime before prediction, it 
is possible to build statistical forecasting techniques 
specifically on that weather regime.  The statistical 
model, in this case autoregressive (AR) models and 
ANNs, are specifically trained on each dataset 
independently, and thus model the dynamics of each 
cloud regime. Finally, the clearness index predictions 
are made by determining which cloud regime the current 
observation is in, and then applying the model built on 
that cloud regime to predict the 15 minute intervals out 
to 180 minutes.  

 
3.  DATA 
 
The observation data used in this study are from 

NOAA’s Surface Radiation (SURFRAD) budget network  
(Augustine et al 2000). The data contained in the 
SURFRAD network of sites includes global horizontal 
irradiance (GHI), direct normal irradiance (DNI), 
temperature, relative humidity, surface pressure, and 
wind speed.  At this time, only the GHI is used from the 
SURFRAD dataset.  GHI is measured with an Epply 
ventilated Precision Spectral Pyranometer.  Future work 
will include the observed SURFRAD meteorology 
variables as input into the statistical prediction methods.  

The National Renewable Energy Laboratory 
(NREL) Renewable Resource Data Center created and 
distributed the solar position and intensity, or 
SOLPOS.C calculator (NREL 2000). This calculator is 
used to compute our TOA GHI, solar elevation, solar 
altitude, and zenith angle specific to our locations.  This 
TOA GHI data is then used to compute the clearness 
index and make predictions for the future. 

4.  CLOUD REGIME IDENTIFICATION 

We wish to identify the cloud regime before 
applying statistical prediction methods to each of the 

cloud regimes independently.  Identifying weather 
regimes and then applying performance weighted 
forecasting techniques have been shown to improve 
prediction in ensemble weather forecasting (Greybush 
et al 2008). The statistical prediction methods are 
trained and tested on each cloud regime independently, 
and then trained and tested on all data to determine the 
benefit of identifying current cloud regime as the first 
step in the prediction process. 

The initial method of classifying cloud regimes is via 
the clearness index (Kt). Kang and Tam (2013) and 
Marquez et al (2013) used the daily sky clearness index 
to identify cloud regimes. These thresholds were 
determined via a sensitivity study comparison to 
climatological average cloud conditions. The clearness 
index is the ratio of the observed irradiance to the TOA 
expected irradiance. The clearness index classifies the 
current cloud regime as clear sky if the Kt value is 
greater than 0.6.  If the clearness index value is below 
0.2, that instance is classified as being in the cloudy 
regime.  Values between or equal to 0.2 and 0.6 are 
classified as the partly cloudy regime. This classification 
system is applied to one minute time-step clearness 
index values averaged over the previous hour to 
determine if the current regime is clear, cloudy, or partly 
cloudy. The number of instances (hours) classified as 
clear (1843), cloudy (645), and partly cloudy (2146) are 
shown in Figure 2 as well as the percentages of each 
regime. To visualize the differences between regimes, 
Figure 3 shows the average daily clearness index 
pattern for a sensitivity study that computed the average 
daily cloud regime. For one year of data at the Boulder 
SURFRAD location, each day was classified according 
to the clearness index thresholds above.  One important 
feature this plot displays is that the clearness index 
pattern on partly cloudy days is not symmetrical. This is 
due to the fact that partly cloudy conditions in Boulder, 
especially during the summer, are typically days that 
start as clear before afternoon cumulus and 
cumulonimbus clouds develop. 

 

Figure 2. Actual instances and percentage of instances 
(hours) classified as partly cloudy, clear, or cloudy for 
Boulder, Colorado 2012-2013. 

To create the training and testing datasets, two 
years of SURFRAD data at the Boulder location are 
used.  For each hour of the day, the clearness index is 
computed.  The 15 minute average Kt values are 
calculated in each of the previous twelve 15 minute 
intervals to use as predictors as well as the following 
twelve 15 minute intervals are calculated for the target 
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forecast intervals.  In addition, the month, hour, solar 
elevation, solar altitude, and solar zenith angles for the 
initialization forecast time are included in the potential 
predictor dataset.   

 

Figure 3. Average clearness index for times classified 
as clear (blue), partly cloudy (red), cloudy (black), and 
the TOA GHI for Boulder, Colorado averaged over one 
year. 

5.  FORECASTING TECHNIQUES 

5.1. Baseline Technique: Persistence 

It is useful to run a complicated statistical model 
only if it can improve upon a simple and effective model.  
Thus, we use the simple baseline technique of 
persistence, which is the assumption that future weather 
will remain the same as the current weather. To do this, 
the clearness index is computed at the current time and 
projected into the future. At very short times, 
persistence is challenging to improve upon, especially 
when the sky is completely clear or completely covered 
by clouds with high optical depth values.  However, this 
method will perform poorly during partly cloudy 
conditions that cause highly variable GHI observations 
measured at the surface.  

5.2. Autoregressive Models 
 
An AR model is the continuous version of a Markov 

process.  An AR(1) model is a model that uses only the 
previous time step to predict future time steps, written 
as  
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where Φ is the autoregressive parameter that measures 
the persistence of the quantity being forecast, µ is the 
mean of the quantity being forecast, and ε is the 
residual variance or white noise term.  Similarly, the 
AR(k) model uses the past ‘k’ time steps to predict the 
future time series using the following equation, 
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For a second order autoregressive model, k = 2 and the 
model uses the past two time steps to predict the future 
time series. The AR(1) and AR(2) models are built on 
the last twelve 15 minute interval average clearness 
values to predict the future twelve 15 minute intervals. 

  
5.3. Artificial Neural Networks 
 
Artificial Intelligence (AI) techniques can capture 

non-linear relationships between the predictors and the 
predictand. The ANN is the non-linear prediction 
technique used here. ANN’s advantages include their 
ability to model non-linear processes without the 
assumption of the form of the relationship between input 
and output variables.  In the review by Mellit (2008), the 
AI models used in many studies have been successfully 
developed to model solar radiation, clearness index, 
and insolation with no transformations of the data 
necessary for prediction.   Sfetsos and Coonick (2000) 
found that AI approaches significantly outperform 
traditional linear models in uni- and multi-variate studies, 
with the ANN feed-forward approach showing the best 
results.  

 

 
Figure 4. Schematic of a feed-forward Artificial Neural 
Network used in this study. 

 
The ANN used here, Figure 4, is a feed-forward 

neural network trained by a backpropagation algorithm, 
also known as a multi-layer perceptron (Rosenblatt 
1958).  The Matlab Neural Network Toolbox is the 
neural network used in this study.  This ANN 
configuration has several tunable parameters that are 
determined from a sensitivity study on a training 
dataset. The optimal configurations are selected based 
on which configuration produced the lowest Root Mean 
Square Error (RMSE) on the cross-validation data. The 
sensitivity study tested different combinations of 
predictors to produce the lowest RMSE on the 15-30 
minute clearness index forecast.  The lowest RMSE of 
the ANN was found with only three predictors: the 
current clearness index, the month and the hour. The 
configuration of the ANN with the lowest error had one 
hidden layer with ten hidden nodes. The process of 
training, testing, and validating the model took less than 
ten seconds to run on a desktop computer. 
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6. RESULTS 
 
The results from applying autoregressive and ANN 

methods are compared to the baseline method of 
persistence.  The results plotted in Figures 5-9 show the 
percent improvement over persistence forecasting for 
the prediction of clearness index in 15 minute intervals 
out to 180 minutes. The AR(2) model is used for 
predicting only the first six forecast time periods since 
the error of the AR(1) model is nearly identical to the 
AR(2) model and only requires data from the previous 
time step.  

The results for the cloudy regime, Figure 5, show 
that the AR models improve upon persistence for the 
first two 15 minute intervals (i.e. out to 30 minutes). 
After 30 minutes the ANN improves upon persistence 
when the AR models fail to show improvement over 
persistence. 

 

Figure 5. Percent improvement over persistence for the 
cloudy regime. The autoregressive models show the 
highest percent improvement in the first 30 minutes and 
the ANN shows the highest percent improvement after 
30 minutes. 

 
The results for the partly cloudy regime, shown in 

Figure 6, are similar to the results for the cloudy regime. 
Once again, the AR models improve upon persistence 
for the first two 15 minute intervals but after 30 minutes 
the ANN improves upon persistence when the AR 
models do not show improvement over persistence. 

 

 
Figure 6. Percent improvement over persistence for the 
partly cloudy regime.  The autoregressive models show 
the highest percent improvement in the first 30 minutes 
and the ANN shows the highest percent improvement 
after 30 minutes. 

 
After the first 15 minutes, the results for the clear 

regime differ from the results for the cloudy and partly 

cloudy regime.  Figure 7 shows that the AR models 
improve upon persistence for the first 15 minute interval, 
but then do not show substantial improvement over 
persistence after that. The ANN only improves in the 
last thirty minutes of prediction (i.e. from 150 to 180 
minutes). 

 

Figure 7. Percent improvement over persistence for the 
clear sky regime.  Only in the first 15 minute interval and 
the last 30 minutes do AR models and the ANN 
respectively improve upon persistence. 

 
The next step was to examine the results for the 

methods trained on the dataset with all days. The 
percent improvement over persistence for the models 
trained on all days is plotted in Figure 8.  Here the 
results are similar to the results from the models trained 
on the cloudy and partly cloudy datasets. The AR 
models improve upon persistence for the first two 15 
minute intervals (i.e. out to 30 minutes). After thirty 
minutes the ANN improves upon persistence when the 
AR models show no improvement or negative percent 
improvement over persistence. 

 

 
Figure 8. Percent improvement over persistence for 
models trained on all days.  The autoregressive models 
show the highest percent improvement in the first 30 
minutes and the ANN shows the highest percent 
improvement after 30 minutes. 

 
The results for the first order autoregressive model 

on all time periods for all cloud regimes are plotted in 
Figure 9.  These results indicate that the error increases 
as the forecast lead time increases.  The cloudy regime 
has the highest MAE while the clear regime has the 
lowest MAE.  The combined results of clear, partly 
cloudy, and cloudy datasets do not improve upon the 
“all days” autoregressive model. All cloud regime trained 
AR(1) models show similar results in the first 45 minutes 
of the forecasting period. 
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Figure 9. Mean Absolute Error for all forecast lead times 
using the first order autoregressive model.  The 
combined line is the average of models trained on the 
clear, partly cloudy and cloudy datasets independently. 

Similar to the results for the AR(1) model, the 
forecast error for the ANN increases as the forecast 
lead time increases. These results for the ANN model 
on all time periods for all cloud regimes are plotted in 
Figure 10. All of the lines on the plot are in close 
proximity to one another. This means that the combined 
results for the ANNs trained and implemented 
independently on each cloud regime, and results for the 
ANN trained on all of the instances, show similar errors. 
The combined results of clear, partly cloudy, and cloudy 
datasets does not yield improvements upon the “all 
days” ANN model, which is likely due to the limited 
training data by partitioning the data. 

 
 

 
Figure 10. Mean Absolute Error for all forecast lead 
times using the first order autoregressive model.  The 
combined line is the average of models trained on the 
clear, partly cloudy and cloudy datasets independently. 

In addition to providing a deterministic forecast for 
each cloudiness interval, we also wish to forecast the 
variance within each 15 minute interval.  The variance 
within each 15 minute interval indicates the variability of 
the GHI. This information describes the potential 
variability of the solar power for each 15 minute interval.  
The results of the ANN model appear in Figure 11.  

These results indicate that the ANN is able to accurately 
predict the variance for both the clear and partly cloudy 
regimes.  There is a decreasing difference between the 
prediction of the variance and the actual variance as the 
lead time increases for the cloudy dataset.  It is likely 
that the smaller dataset for the cloudy regime did not 
provide enough training data for the ANN to capture the 
signal within the noise of the data. An important result in 
this plot is the difference of the variance among the 
cloud regimes.  This shows that by identifying the cloud 
regime with the clearness index before making the 
forecast allows the model to provide estimates of the 
clearness index variance during the forecast period. 
These values vary from 0.004 for the cloudy regime at 
shorter forecast time periods to 0.010 at the longer 
forecast times periods for the clear regime.  

 

 
Figure 11. The ANN prediction of the 15 minute 
variance compared to the actual 15 minute variance.  
Results are shown for all cloud regimes and the actual 
variance in the dataset with all instances.  

 
7. CONCLUSIONS AND FUTURE WORK 
 
We have tested autoregressive models and ANNs 

for predicting the clearness index for 15 minute intervals 
out to 180 minutes (3 hours).  In addition, the variance 
within each 15 minute interval has been calculated and 
predicted by the ANN.  The results show that the AR(1) 
and AR(2) models are able to improve upon the 
baseline forecasting technique of persistence for the 
first two fifteen minute forecast periods when there are 
clouds present.  For those conditions, after thirty 
minutes, the ANN improves upon persistence when the 
AR models do not.  When the cloud regime is classified 
as clear, only in the first 15 minutes are the AR models 
able to improve upon persistence. Persistence is difficult 
to improve upon due to the clearness index remaining 
constant from steady cloud cover. For the variance 
prediction, the results indicate that the ANN model is 
able to accurately predict the variance of the clearness 
index within the 15 minute forecast periods.  In addition, 
the cloud regime classification via clearness index 
thresholds shows that there are different clearness 
index variances for each cloud regime.  Thus, identifying 
the cloud regime via the clearness index is viable for an 
initial estimate of the clearness index variability, and the 
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ANN is able to more accurately predict this variability in 
each of the 15 minute intervals out to 180 minutes. 

This paper reports on data from one SURFRAD site 
in Boulder, Colorado. We plan to test these methods for 
more locations and a longer time series. The ANN was 
configured based on a time series of GHI observations 
converted to a clearness index value as well as the 
solar geometry at the time of forecast.  More inputs, 
including satellite data, total sky imager data, observed 
meteorology data, and numerical weather prediction 
short term forecasts will also be tested to determine 
whether they improve the predictive capability of the 
ANN. 

There are multiple ways to potentially improve upon 
the methods described here. The first step in the future 
work will be to identify the cloud regimes with different 
techniques.  One method that will be tested is through 
performing Self-Organizing Maps (SOMs) on vertical 
cloud fraction output from the Rapid Update WRF 
model.  Another technique that will be tested is doing 
clustering algorithms on a regional weather analysis in 
order to identify the overall weather pattern.  These 
techniques will be used to identify more specific cloud 
regimes, such as a cirrus regime, stratus regime, and 
cumulus regime. 

 
 

Acknowledgements:   This research is supported by 
the Department of Energy Sunshot Program and the 
National Center for Atmospheric Research. The authors 
wish to thank the entire Solar Power Forecasting Project 
Team Members as well as the first author’s PhD 
committee members for helpful guidance and 
suggestions.   

 
References 

 
Augustine, J. A., Deluisi, J.J., and Long, C.N., 

2000: SURFRAD – a national surfrace radiation 
budget network for atmospheric research. The 
Bulletin of the American Meteorological Society. 81, 
2341-58.  

 
Bhardwaj, S., Sharma, V., Srivastava, S., Sastry, O.S., 

Bandyopadhyay, B., Chandel, S.S., and Gupta, 
J.R.P, 2013: Estimation of solar radiation using a 
combination of Hidden Markov Model and 
generalized Fuzzy model. Solar Energy, 93, 43-54. 

 
Bouzerdoum, M., Mellit, A., and Pavan, A, 2013: A 

hybrid model (SARIMA-SVM) for short-term power 
forecasting of a small-scale grid-connected 
photovoltaic plant. Solar Energy, 98, 226-235. 

 
Chu, Y., Pedro, H., and Coimbra, C, 2013: Hybrid intra-

hour DNI forecasts with sky image processing 
enhanced by stochastic learning. Solar Energy, 98, 
592-603. 

 
R. Marquez, V. Gueorguiev, and C.F.M. Coimbra (2013) 

“Forecasting of Global Horizontal Irradiance Using 

Sky Cover Indices, ASME Journal of Solar Energy 
Engineering, 135, 0110171-0110175. 

 
 
Fernandez, E., Almonacid, F., Sarmah, N., Rodrigo, P., 

Mallick, T.K., and Perez-Higueras, P, 2014: A 
model based on artificial neuronal network for the 
prediction of the maximum power of a low 
concentration photovoltaic module for building 
integration. Solar Energy, 100, 148-158. 

 
Fu, C-L., and H-Y. Cheng, 2013: Predicting solar 

irradiance with all-sky image features via 
regression. Solar Energy. 97, 537-550. 

 
Greybush, S.J., S.E. Haupt, and G.S. Young, 2008: The 

Regime Dependence of Optimally Weighted 
Ensemble Model Consensus Forecasts of Surface 
Temperature. Wea. Forecasting, 23, 1146–1161. 

 
Kang, B. O., and K-S Tam, 2013: A new 

characterization and classification method for daily 
sky conditions based on ground-based solar 
irradiance measurement data. Solar Energy, 94, 
102-118. 

 
Lew, D. G. Brinkman, A. Florita, M. Heaney, B-M. 

Hodge, M. Hummon, and E. Ibanez, 2012: Sub-
Hourly Impacts of High Solar Penetrations in the 
Western United States. 2nd Annual International 
Workshop on Integration of Solar Power into Power 
Systems Conference, Lisbon, Portugal Nov 12-13 
2012. 

 
 Marquez, R., Gueorguiev, v., and C.F.M. Coimbra, 

2013: “Forecasting of Global Horizontal Irradiance 
Using Sky Cover Indices, ASME Journal of Solar 
Energy Engineering, 135, 0110171-0110175. 

 
Martin, L., Zarzalejo, L., Polo, J., Navarro, A., 

Marchante, R., and Cony, M, 2010: Prediction of 
global solar irradiance based on time series 
analysis: Application to solar thermal power plants 
energy production planning. Solar Energy, 84, 
1772-1781. 

 
National Renewable Energy Laboratory, 2000: Solar 

Position and Intensity Calculator: SOLPOS. 
http://rredc.nrel.gov/solar/codesandalgorithms/solpo
s/aboutsolpos.html.  

 
Mellit, A., 2008: Artificial Intelligence Technique for 

Modeling and Forecasting of Solar Radiation Data: 
A Review. Int. Journal Artificial Intelligence and Soft 
Computing, 1:1, 52-76. 

Rosenblatt, F., 1958: The Perceptron: A Probabilistic 
Model for Information Storage and Organization in 
the Brain. In. Psychological Review, 65:6, 386-408. 



	   7	  

Sfetsos, A. and A. H. Coonick, 2000: Univariate and 
Multivariate Forecasting of Hourly Solar Radiation 
with Artificial Intelligence Techniques. Solar Energy, 
68:2, 169-178. 

 

 


