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ABSTRACT

The Feature Calibration and Alignment technique (FCA) has been developed to characterize errors that a human
would ascribe to a change in the position or intensity of a feature, such as a hurricane. Here FCA is implemented in
the Weather Research and Forecasting Data Assimilation system (WRFDA) to correct position errors in background
fields and tested in simulation for the case of Hurricane Katrina (2005). Within data assimilation, FCA can be
used to explain part of the background error in terms of displacement vectors and make the residual background
errors smaller and more nearly Gaussian. Here, FCA determines a set of 2d displacement vectors to improve the
alignment of features in the forecast and observations by solving the usual WRFDA variational data assimilation
problem—simultaneously minimizing the misfit to observations and a constraint on the displacements. This
latter constraint is implemented by hijacking the usual WRFDA background term for the mid-level u- and v-wind
components. The full model fields are then aligned using a procedure that minimizes dynamical imbalances
by displacing only conserved or quasi-conserved quantities. Simulation experiments show the effectiveness of
these procedures in correcting gross position errors and improving short-term forecasts. Compared to earlier
experiments, even this initial WRFDA implementation produces improved short-term forecasts. Adding FCA to
WRFDA advances FCA towards mainstream implementation since all observations with a corresponding WRFDA
observation operator may be used for FCA and the WRFDA methodology for estimating the background error
covariances may be used to refine the displacement error covariances.

1. Introduction

In meteorology and other geophysical fluid contexts
it is often useful to characterize the flow in terms of fea-
tures—a hurricane, the Gulf Stream, and so forth. In dis-
cussing differences between two estimates! of a feature,
it is often useful to describe the differences in terms of
the intensity and position of key features in the flow. Dif-
ferences in the position of a feature especially result in
errors with substantial and complex spatial correlations,

that may also be non-Gaussian (Lawson and Hansen 2005).

Such errors are certainly not captured by static error co-
variance models. For some variables (precipitation, chlo-
rophyll concentration, ground-water variables) anamor-
phic transformations can reduce the non-Gaussianity of
errors (e.g., Simon and Bertino 2009; Schoniger et al.
2012). Such “Gaussian anamorphisms” can also increase
the background error correlation radius which should im-

11f one is taken to be the truth, then the differences are errors.
Corresponding author address: Thomas Nehrkorn, AER, 131
Hartwell Avenue, Lexington, MA 02421. E-mail:tnehrkor@aer.com

prove the data assimilation as this tends to increase the
benefit from each observation (Brankart et al. 2012).
For data assimilation it is assumed that error statis-
tics are Gaussian and known. Actual errors may be non-
Gaussian and, at best, the error statistics are approxi-
mately known. Specifying the error statistics is itself
an estimation exercise. With limited data available it is
desirable to have parsimonious representation of these
error statistics.> Errors caused by a feature being in-
correctly positioned can be parsimoniously described in
terms of displacements. This suggests solving for the
displacements, anticipating that the residual errors after
aligning the background field will be smaller and more
nearly Gaussian. We have developed the Feature Calibra-
tion and Alignment technique (FCA) to solve this prob-
lem (Hoffman et al. 1995; Hoffman and Grassotti 1996;

2For example, errors of a particular variable, say ocean surface wind
speed, may vary with location and season in some complex way, while
in fact the errors depend principally on wind speed magnitude itself
and then on location and season through the variability of wind speed
(Hoffman et al. 2013).
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FI1G. 1. Location of the study domain. A 30 km grid covering the area shown is used in all FCA calculations and
for all WRF forecasts. Latitude north and longitude east and state boundaries are indicated in grey. IWV in kg m—2
is shown (in the same color scale used in subsequent figures) for the nature run simulation of Hurricane Katrina. All
subsequent figures are for the area of the black box containing the IWV signature of Katrina.

Grassotti et al. 1999; Nehrkorn et al. 2003, 2014). In
this study FCA is used to correct position errors in back-
ground fields. To do this, FCA determines 2d displace-
ment vectors by solving the usual WRFDA variational
data assimilation problem, but with the displacements
as the control vector. Nehrkorn et al. (2014) general-
ized the method of Hsiao et al. (2010) to apply horizon-
tal displacements to 3d model fields without introducing
large imbalances, and this method is used here. Many
additional studies (Ahijevych et al. 2009, and references
therein) have taken a feature oriented approach for veri-
fication and sometimes data assimilation. For example,

Beezley and Mandel (2008) makes use of “morphing”.?

3FCA can operate on images in a similar way, but we have devel-
oped FCA so that it can also use any type of data to align a background
state.

Additional examples of feature alignment in data assim-
ilation are given by Nehrkorn et al. (2014).

In the present paper, we report on a major step to-
wards operationalizing FCA. This work extends similar
experiments reported by Nehrkorn et al. (2014), but in
the earlier work we used IWV observations alone to de-
termine the alignment using the approach of Grassotti
et al. (1999). Now, FCA is integrated into the WRFDA
(Barker et al. 2012) (see Section 3) and (pseudo-)radio-
sonde observations were used to determine the alignment.
In an idealized experiment for Hurricane Katrina (2005)
(Section 2) we demonstrate how FCA corrects gross po-
sition errors and how FCA alone improves short-term
forecasts, and that using radiosonde observations results
in greater improvement compared to IWV observations
(Section 4). FCA in WRFDA is a key advance since all
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FIG. 2. TWV in kg m~2 for the nature run at 06, 12, and 18 UTC and the difference of 06—12 UTC. Roughly speaking,
the IWV signature of Katrina is tracking steadily to the NW. The color scales shown are used on all figures. The three
“X” marks on each panel (and on the panels of all subsequent figures) indicate the centers of the IWV feature at the

three synoptic times shown.

observations with a corresponding WRFDA observation
operator may be used for FCA and the WRFDA method-
ology for estimating the background error covariances
may be used to refine the displacement error covariances
(Section 5).

2. Simulation experiments

Identical twin Observing System Simulation Experi-
ment (OSSE) for Hurricane Katrina (2005) are used here
and by Nehrkorn et al. (2014) to test the utility of FCA-
derived displacements to align 3d model fields. The de-
fault WRF tutorial Katrina case, run for 24 hours from 00
UTC 28 August 2005, provides the nature run (NR). The
model domain is shown in Fig. 1. For this NR, Global
Forecast System (GFS) analyses provide the initial and
boundary conditions; grid spacing is 30 km; there are 28
levels; and the time step is 180 s. The NR at 06 UTC is

then taken to be the background or first guess for the 12
UTC analysis. That is, the NR at 12 UTC is the truth.
Observations are constructed by spatially subsampling
the NR at 12 UTC every third grid point in each direc-
tion, excluding a 5-grid point border, to create a set of
simulated observations. This provides FCA with a set
of observations that are synoptically consistent with the
truth (NR at 12 UTC) and a background showing the hur-
ricane displaced to the southeast. The FCA-determined
displacements are used to align the 3d background fields
and then short-term forecasts are run from 12 UTC to 18
UTC.

Figure 2 shows the evolution of IWV in the NR and
the IWV background error. Over this period, Katrina
moves steadily towards the NW. Consequently there is
a significant dipole error structure consistent with this
movement—the background IWV is low in the area of
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F1G. 3. The IWV control forecast and forecast error at
18 UTC. The WREF forecast model, even at the coarse
30 km resolution used, is able to correctly capture the
movement of the IWV signature of Katrina. Therefore
the control forecast beginning with IC that lags the nature
run by 6 h, continues to lag the nature run by 6 h and
the forecast error is very similar in structure to the initial
error (panel labeled B-T in Fig. 2) but shifted towards
the NW.

the true storm location and high in the area of the storm
location in the background. Basic statistics for the error
in the region plotted, as well as for all other difference
fields plotted, are given in Table 1. Figure 3 shows the
control forecast valid at 18 UTC. Since the control fore-
cast basically started from the NR model state that was
6 hours old, it continues to lag the truth by 6 hours and
position Katrina in the forecast valid at 18 UTC, close to
the true location at 12 UTC. The forecast error structure
of control is similar to the initial condition error struc-
ture but shifted to the NW. So the forecast error is sim-
ilar to the difference of truth at 12 UTC and 18 UTC.
Similarly the control forecast initial conditions are equal
to the truth at 06 UTC and the initial conditions error is
the difference of truth at 06 UTC and 12 UTC. Finally,

TABLE 1. IWV error statistics (kg m~2). The first group
(the background and analyses) are calculated from fields
valid at 12 UTC and the second group (the forecasts) are
calculated from fields valid at 18 UTC.

Error Fig. | Mean s.d. RMS Min. Max.
B-T 2| 222 637 675 -21.35 1573
A-T 7| -0.12 393 393 -17.16 20.09

AWV_O 10 | -0.63 256 264 -7.62 7.83
Alc-T 11| 024 422 423 -26.28 21.03
F.-T 3] -092 556 564 -17.34 2130
F,-T 8| 007 290 290 -6.65 831
FlC_T 12 | 0.15 3,56 3.57 -1524 14.19

since the core of Katrina in the NR is basically track-
ing steadily towards the NW, these two difference fields
are very similar in structure, but shifted along the storm
track.

3. Formulation of FCA for WRFDA

First guess fields used in data assimilation procedures,
typically short-term forecasts, often contain errors caused
by position errors of coherent structures or features. FCA
provides an alternative to correcting the first guess with
additive increments by explicitly correcting position er-
rors.

Nehrkorn et al. (2014) implemented FCA as a stan-
dalone preprocessor to WRF using the methodology of
Grassotti et al. (1999). Now we have implemented a pro-
totype FCA algorithm directly into the quasi-operational
WREF variational data assimilation system (DAS), pro-
viding a seamless integration with the rest of the WRF
functionality. In the WRF DAS (hereafter WRFDA) pro-
totype we define the cost function J = J, +J,. The usual
definitions of J, = (x —x,)"B~!(x —x;) and J, = (y —
H(x))TR™'(y — H(x)) are used, but with some critical
modifications. Here, the observation vector y is unchanged
from normal usage, but now the control vector x contains
only the eastward- and northward-components of the dis-
placement field. Likewise the observation error covari-
ance matrix R (taken to be the identity matrix here) is un-
changed from normal usage, but now the background er-
ror covariance matrix B is defined below in Section 3.b to
be appropriate for the displacements. In this study, x, =
0, i.e., the prior for the displacements is zero. The obser-
vation operator H = H(x;z;) may be considered to have
two steps: First, use the current estimate of the displace-
ments x to align the (constant) prior model state, here de-
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F1G. 4. Cost function (left) and gradient (right) for the WRFDA FCA calculation of the Hurricane Katrina case for ten
outer loop steps (OLSs). Values for the total and observation cost function are shown in black (left axis), and those for
the background are shown in red (right axis). Notice the difference in scale. Both y-axes are logarithmic. The x-axis

is labeled by the cumulative inner iteration number.

noted z,.* Second, apply the usual observation operator
to the result of the first step. In the first step, the model
fields are aligned using the Nehrkorn et al. (2014) gen-
eralization of the method of Hsiao et al. (2010). Details
are in Nehrkorn et al. (2014), but in brief: Wind compo-
nents (u, v, w), sea level pressure, relative humidity and
hydrometeor mixing ratios are all displaced along model
surface and potential temperature is displaced along con-
stant height surfaces. Then pressure, specific humidity,
temperature, hydrostatic geopotential and dry air mass
are calculated. Nonhydrostatic geopotential is not dis-
placed. Since only conserved or quasi-conserved quanti-
ties are displaced, these steps aim to limit imbalances in
the aligned fields.

Integration in the WRF DAS (hereafter WRFDA) al-
lows for the reuse of multiple software, including: min-
imization, control vector transformation, observation in-
gest, user interface, file input/output (I/0), and visualiza-
tion. For example, Grassotti et al. (1999) used the Gay

4Usually the prior model state is denoted x;, but in this prototype
implementation of FCA in WRFDA, the model state is not part of the
control vector.

(1990) nonlinear minimization. This has now been re-
placed with the conjugate gradient minimization within
WRFDA. The re-use of the observation ingest alone elim-
inates the need to redevelop separate quality control and
observation operator software, and makes it possible to
use all of the observation types supported by WRFDA.
The WRFDA integration of FCA results in several
improvements. Grassotti et al. (1999) constrained the
displacements using a penalty function comprised of terms
designed to ensure smoothness, non-divergence, reason-
able physical magnitudes, etc. and used a truncated spec-
tral representation for the displacement vector. In con-
trast, the WRFDA implementation leverages the existing
control vector, model coordinate space, and background
error representation of Wu et al. (2002) and Michel and
Auligné (2010). In the WRFDA FCA prototype described
here, the background error covariances derived for the
wind field increments are used to constrain the displace-
ment vector, and the existing WRFDA mechanisms allow
adjusting error magnitudes and correlation length scales.
This provides improved consistency and tighter coupling
between the minimization and adjustment of the model



fields: displacement vectors are derived for an optimal
fit of the displaced model fields to the available observa-
tions, rather than applying displacement vectors to model
fields after their offline derivation using 2d derived fields.
The application of the displacements inside of the DAS
provides a natural path for developing an algorithm that
allows displacements to vary with height and/or allows
for 3d displacements.

a. WRFDA displacement implementation

To maximize re-use of existing WRFDA software,
the displacement vectors make use of the storage allo-
cated for the u- and v-components of the wind increment
during the control vector transformation. (Note that to
enable simultaneous optimization of displacement and
additive analysis increments, the current prototype im-
plementation would need to be modified to allocate sep-
arate storage for the displacement vectors, and to con-
catenate these with the normal WRFDA control vector.)
During the forward (nonlinear and tangent linear) com-
putations, displacement vectors are extracted and applied
to the 3d model fields as described by Nehrkorn et al.
(2014). During the backward (adjoint) computation, the
cost function gradient is computed with respect to the
displacement vectors and stored in the u- and v-compon-
ents of the gradient data structure. WRFDA makes use of
a fully nonlinear outer loop and a linearlized inner loop.
Since this linearization makes the inner loop cost func-
tion quadratic, the conjugate gradient minimization algo-
rithm that is used is efficient and has good convergence
properties. After the inner loop minimization is com-
plete, the resulting model field increments are output as
the analysis increment. The full estimate of the analy-
sis is then used in the next outer loop step (OLS) as the
linearization point.

During the inner loop minimization, linearized ver-
sions of the displacements and observation operators are
used to determine the incremental displacement. The full
non-linear displacement algorithm is then applied in the
outer loop to update the current estimate (i.e., the anal-
ysis) of the 3d model fields, which serves as the lin-
earization point for restarting the inner loop. In this way
the displacements are calculated as a series of incremen-
tal displacements, which are effectively applied cumula-
tively at each OLS of the DAS.

b. Background error covariance scaling and sensitivity testing

We make the implicit assumption that the patterns in
the displacement covariance statistics should be similar
to that for horizontal wind vectors since it is the wind it-

self that is advecting the coherent features in the model
fields. Then wind background error (units of m/s) co-
variances need to be rescaled for their application as dis-
placement vector background errors (units of grid points)
covariances. The effective parameters can be determined
by running a simple single-observation test of the (stan-
dard) DAS. The effective background error standard de-
viation was determined to be approximately 2.7 m/s for
the test case with default namelist settings for background
error variance scaling (0.25). If used without rescaling,
this would correspond to a displacement length scale in
units of grid lengths (30 km in our test case), approxi-
mately 81 km. The standalone prototype used a displace-
ment length scale of 150 km, so we multiply the standard
variance rescaling by a factor of (150/81)%. A similar
procedure is used for the length-scale tuning. The single
observation test revealed an effective e-folding length of
the analysis increment of about 400-600 km, which is
in rough agreement with the smallest scale allowed by
the truncated spectral representation (total wavenumber
5) used by Grassotti et al. (1999).

The sensitivity of the DAS FCA solution to the size
of the background error variance was examined by using
both the rescaled (150 km) and unscaled (81 km) dis-
placement length scale. The solution changed very lit-
tle as a result. Similarly, providing either full radiosonde
profiles (i.e., surface pressure and wind, temperature, and
humidity profiles), or just profiles of winds, had little ef-
fect on the solution. This is consistent with the findings
of Nehrkorn et al. (2014) for this case. Their results were
also not very sensitive to the tunable FCA parameters or
whether IWV alone or IWV and surface pressure obser-
vations were used.

c. Parallel processing considerations

For applications to large domains that cannot be stored
in memory available to a single compute node, the WRF-
DA FCA is implemented using MPI and halo exchanges,
allowing the use of multiple cores within a given node or
across nodes.’ The native WRFDA domain decomposi-
tion is used to divide the domain into several patches to
spread the load across multiple cores, where each core
is assigned one patch. Complications arise when a dis-
placement for the current grid point references a location
outside the local patch.

When this occurs, separate MPI inter-process com-
munication is used. Since the same set of displacement
vectors is applied to multiple model fields (and levels),

SEach core is capable of executing one instance of a process or
thread.
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F1G. 5. The incremental displacements for the WRFDA FCA calculation of the Hurricane Katrina case from the first
four OLSs. Displacements are shown as arrows pointing in the direction that the background field should be displaced,
but are only plotted every third grid point in the x-direction and every other grid point in the y-direction for clarity.

the needed communication was organized into two steps
such that information related to displacement vector ori-
gin and end points is exchanged only once. During the
first step of this procedure, each process compiles a list of
the displacement vectors with end points in its own patch
of the model domain for which model values are needed
at origin points outside its patch. The processes then ex-
change their list of needed points to create a global list
of needed origin grid points. Each process searches the
global list of needed points, and extracts two sets of in-
formation: (1) a set of displacement vectors with origin
points inside its own patch; (2) a mapping of the previ-
ously determined needed origin points (outside its patch)
to the global list of needed origin points. This infor-
mation is then used in multiple applications of the sec-
ond step, in which interpolated values at vector origin
points are exchanged between processes. Finally, halo
updates are called following the computation of displace-

ment analysis increments, so that updated halo values are
available during the remainder of the DAS processing
(e.g., for the computation of the innovation vector).

4. Results

The OSSE setup of Section 2 is the same as in Nehrkorn
et al. (2014), except that they used simulated IWV and/or
surface pressure observations, and here we use simulated
radiosonde observations. As we are assimilating RAOB
soundings, we are limited to ingesting u, v, temperature,
and dew point. The WRFDA FCA prototype was run
for ten OLSs to allow us to examine the convergence be-
havior.

We found that the WRFDA FCA solution converged
after five or six OLSs (Fig. 4) with relatively small in-
crements found after three OLSs (Fig. 5). After a small
number of OLSs, little reduction in error was achieved.
As is to be expected, the background cost function in-
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F1G. 6. WRFDA FCA-calculated displacements at 12
UTC, using simulated radiosonde observations. Plotted
as in Fig. 5: Displacements are shown as arrows pointing
in the direction that the background field should be dis-
placed, but are only plotted every third grid point in the
x-direction and every other grid point in the y-direction
for clarity.

creases while the observation cost function decreases.
Note that here Jj, include displacements from all previous
OLS:s. In this case, the background cost function remains
orders of magnitude smaller than the observation cost
function, and the latter is indistinguishable from the total
cost function on this plot. As the displacements are ap-
plied in the outer loop, each OLS produces its own incre-
mental displacements (Fig. 5). The cumulative displace-
ment vectors (shown below in Fig. 6) approximately cor-
respond to the total displacement vectors applied to the
background field. In that sense they are comparable to
the vectors derived by Nehrkorn et al. (2014) using the
Grassotti et al. (1999) methodology (shown in Fig. 9).
The WRFDA FCA prototype displaces the vortex in the
same way as found by Nehrkorn et al. (2014) during the
first two OLSs, but shows some differences outside of the
vortex that are largely introduced in subsequent OLSs.
This level of agreement is remarkable given that the two
methods use different observations (IWV vs. radioson-
des) and different constraints.

Figure 7 shows the resulting IWV field after aligning
the model state, and the error of the IWV field. Clearly
the displacements are the correct direction and magni-
tude. The reconstructed IWV field has lost its symmetry—
remember we are aligning the fields of potential temper-
ature and relative humidity—but is nearly centered on
the correct location. This asymmetry is seen both in the
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F1G. 7. WRFDA FCA adjusted IWV and IWV error at
12 UTC. Since the displacements are calculated from the
simulated radiosonde observations and not IWV obser-
vations, the adjusted IWV field loses its symmetry. How-
ever, errors are reduced (compare to panel labeled B-T
in Fig. 2).

IWV itself and in the IWV error. After a short-term fore-
cast to 18 UTC, the IWV feature has regained its sym-
metry (Fig. 8) and is in the correct location. The forecast
IWYV errors (F,~T) are smaller and less organized than
the aligned initial conditions IWV errors (A-T).

It is instructive to compare these results to the re-
sults of Nehrkorn et al. (2014). While there is agree-
ment in the broad scale displacement fields, there are
some interesting differences. Figure 9 shows the dis-
placements determined by the standalone FCA using the
IWYV data. Note the generally similarity of the displace-
ments in Fig. 6 and Fig. 9. Figure 10 shows the directly
aligned IWV field, and its error (A’"V-O, where O is the
observations®). Here the IWV errors are very small—
the FCA was applied to this field directly. Figure 11 is
similar to Fig. 10—the displacements are identical—but
here IWV is determined from the model fields that have

%Here O is used, not T. But O is subsampled T.
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F1G. 8. The IWV WRFDA-adjusted forecast and fore-
cast error at 18 UTC.

been aligned as described in Section 3. As was the case
in Fig. 7, there is some loss of symmetry (but less here).
The center of the IWV signature of the storm is displaced
to the south and there is again a definite dipole structure
in the errors. Again IWV regains a symmetrical structure
after the short-term forecast (Fig. 12), but the IWV sig-
nature of the storm is forecast SSE of the truth, and this
forecast is clearly inferior to that of Fig. 8.

5. Discussion and Conclusions

The feature calibration and alignment technique (FCA)
is used to correct position errors in background fields.
To do this, FCA determines 2d displacement vectors by
solving the usual WRFDA variational data assimilation
problem, but with the displacements as the control vec-
tor. The full model fields are then aligned following the
generalization of the method of Hsiao et al. (2010) by
Nehrkorn et al. (2014). This procedure minimizes dy-
namical imbalances by displacing conserved or quasi-
conserved quantities and then recalculating needed de-
rived quantities. Katrina OSSEs show the effectiveness
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FI1G. 9. Standalone FCA displacements calculated using
IWYV observations. Plotted as in Fig. 6.

of these procedures in correcting gross position errors
and improving short-term forecasts.

Implementation of FCA into the quasi-operational WREF-
DA represents a major advance over the standalone im-
plementation of Nehrkorn et al. (2014). First, WRFDA
FCA is not restricted to comparing 2d fields. Second,
it can simultaneously make use of all observation types
supported by WRFDA—no new observation operators
are required. Third, the WRFDA estimation of error co-
variances can be used to refine the displacement error co-
variances. (In the current work, a simple rescaling of the
wind background error covariances was used to charac-
terize the displacement error covariances (Section 3.b).)
Fourth, the parallel implementation of the WRFDA FCA
algorithm is computationally efficient and scalable. By
reducing demands on per-processor memory and over-
all wall-clock time it is feasible to apply the algorithm
to large model domains and/or large numbers of cases.
Fifth, the approach to implementing FCA in WRFDA
could be applied to other variational data assimilation
systems in a straightforward manner.

Comparison with the Katrina case identical twin OSSE
of Nehrkorn et al. (2014) shows that the WRFDA FCA
implementation performs properly and generally repro-
duces the major features of the standalone solutions. By
design the standalone displacements greatly reduce the
error in the aligned IWV field. In comparison, the align-
ment of the 3d model fields results in larger residual IWV
errors, but these errors are still greatly reduced compared
to the control case. When the aligned model fields are
used as initial conditions in short-term forecasts, the fore-
casts of IWV are much improved relative to control, with
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F1G. 10. Standalone FCA displacements of Fig. 9 ap-
plied directly to IWV. Plotted as in Fig. 7.

the greatest improvement seen in the WRFDA FCA ex-
periment. This should be expected since the WRFDA
FCA experiment used radiosonde profiles in place of IWV
observations. The radiosonde data are superior in terms
of quantity and diversity, represent the 3d structure of the
atmosphere, and are more dynamically relevant than the
IWYV observations.

Future work will investigate various aspects of dis-
placement increments, such as changes to the background
error specification (beyond the basic rescaling exercised
so far); the optimal combination of displacement and ad-
ditive increments, and the selective use of different ob-
servation types for one or the other; the use of the princi-
ple of time continuity for the displacements; and the use
of vertically varying displacement vectors.
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Fi1G. 11. Like Fig. 10, but here the IWV is calculated
from the displaced model state using the FCA displace-
ments of Fig. 9. The IWV field is more symmetric than
in Fig. 7, but the magnitude of the errors are similar.
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