## Comparison of Selected In-Situ and Remote Sensing Technologies for Atmospheric Humidity Measurement

Petteri Survo<sup>1</sup>, Thierry Leblanc<sup>2</sup>, Rigel Kivi<sup>3</sup>, Hannu Jauhiainen<sup>1</sup>, Raisa Lehtinen<sup>1</sup>

<sup>1</sup>Vaisala Oyj, <sup>2</sup> California Institute of Technology, <sup>3</sup>Finnish Meteorological Institute



VAISALA

95<sup>th</sup> AMS Annual Meeting 19<sup>th</sup> Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS)

### **Table Mountain Campaign**



19th Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS) VAISA

#### Radiosonde Humidity Measurement RS92 vs. RS41

|                    | Radiosonde              | RS92-SGPD                                                        | RS41-SG                                                               | RH         |
|--------------------|-------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|------------|
| RH twin-<br>sensor | Sensor type             | Thin-film capacitor,<br>heated twin sensor                       | Thin-film capacitor,<br>integrated T sensor,<br>heating functionality | KII SENSOR |
|                    | Uncertainty in sounding | 5 %RH                                                            | 4 %RH                                                                 |            |
|                    | Response<br>time (63 %) | < 20 s (T=-40 °C)                                                | < 10 s (T=-40 °C)                                                     |            |
|                    | Ground check            | Corrected against<br>0%RH humidity<br>generated by<br>desiccants | Corrected with<br>RS41 in-built<br>Physical Zero<br>Humidity Check    |            |

Page 3 2015-01-08

19th Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS)

NDA(

## NASA Jet Propulsion Laboratory Table Mountain Facility in California, USA

#### 34.40°N, 117.70 °W 2285 m above mean sea level





#### Sounding campaign:

- 2014-05-29 2014-10-30
- 19 dual launches RS41-RS92

VAISALA

Night-time soundings

# Instruments in the Table Mountain Campaign

#### **Raman Lidar**

- Nd:YAG 355 nm, 650mJ/pulse
- Detection range 1–20 km
- Calibration to RS92 3–6 km
- MR uncertainty 5–15 % (1-13 km)
- **GPS**, NOAA Forecast Systems Lab Seth Gutman, Kirk Holub
  - IPW uncertainty 1.5 mm + 1%
- MWR, Naval Research Lab Gerald Nedoluha
  - IPW uncertainty 3%





## **Examples of Relative Humidity Profiles**



19th Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS) VAISA

#### **Relative Humidity – Summary of 17 Flights**



Page 7 2015-01-08



#### **A Water Vapor Volume Mixing Ratio Profile**



19th Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS)

#### Water Vapor Volume Mixing Ratio - Means of 17 Flights



19th Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS) VAISALA

#### Water Vapor Volume Mixing Ratio - Means of 17 Flights



#### Water Vapor Volume Mixing Ratio - Means of 17 Flights



#### **Integrated Precipitable Water Column**



Page 12 2015-01-08

19th Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS)

VAISA

#### **Integrated Precipitable Water Column**



## Arctic Research Center of Finnish Meteorological Institute in Sodankylä



67.368 °N, 26.633 °E 179 m above mean sea level 6 launches: CFH - RS41 - RS92 2014-02-07 - 2014-11-19



# **Cryogenic Frostpoint Hygrometer (CFH)**

| Measured Parameters        | Ambient Frost Point                                                                      |           |  |
|----------------------------|------------------------------------------------------------------------------------------|-----------|--|
| Derived Parameters         | Relative Humidity, Mixing Ration                                                         |           |  |
| Technique                  | Temperature-controlled chilled mirror                                                    |           |  |
| Uncertainty Measurement    | < 4% in tropical lower troposphere<br>< 10% in middle stratosphere<br>< 9% in tropopause |           |  |
| Altitude Range             | 0 - 25 km (all climates)                                                                 |           |  |
| Weight                     | < 400 g (without coolant)                                                                |           |  |
| Instrument Dimensions      | 7.6 cm x 7.6 cm x 13.3 cm                                                                |           |  |
| Dimensions (in Flight Box) | ~12" W x 12" D x 12" H (~39cm x 39cm                                                     | n x 39cm) |  |

19th Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS) VAIS

NDA(

## **Examples of Relative Humidity Profiles**



Page 16 2015-01-08

19th Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS) VAISAL

## **Examples of Relative Humidity Profiles**



Page 17 2015-01-08

19th Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS) VAISAL

#### **Relative Humidity – Summary of 6 Flights**



Page 18 2015-01-08



#### **Example of Water Vapour Mixing Ratio Profile**



19th Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS) VAISAL

#### Water Vapor Volume Mixing Ratio - Means of 6 Flights



Page 20 2015-01-08

19th Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS) VAISALA

#### Water Vapor Volume Mixing Ratio - Means of 6 Flights





#### Water Vapor Volume Mixing Ratio - Means of 6 Flights



### **Table Mountain Campaign**



19th Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS) VAISA

# Thank you

Page 24 2015-01-08

