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Infrared brightness temperature assimilation using an
LETKF at convection-resolving resolutions

1. Introduction

Clouds and atmospheric water vapor strongly influence sensitive weather conditions
through their combined effect on surface temperatures and precipitation. Small changes in
the water vapor and cloud distributions can have a profound impact on the generation and
subsequent evolution of high impact weather events, such as severe thunderstorms, heavy
rainfall and tropical cyclones. Thus, an accurate and spatially representative specification
of clouds and water vapor in datasets used to initialize high-resolution numerical weather
prediction models is essential to produce accurate forecasts of cloud cover, precipitation,
and storm evolution.

2. Assimilation of SEVIRI radiances with LETKF

Motivation:

» Direct assimilation of SEVIRI radiances (instead of
retrievals)

Challenge: Direct assimilation of cloud-affected SEVIRI radiances

Model: high-resolution COSMO-DE, a non-hydrostatic limited area model run at
2.8 km horizontal resolution, 50 vertical layers with explicit deep convection
Data assimilation method: Local Ensemble Transform Kalman Filter (LETKF;
Hunt et. al., 2007) with RTTOV 10 as forward operator.

Observations: MSG SEVIRI brightness temperatures

4. Cloud dependent Bias Correction
Observation minus Background

® In Fig 8-10 are represented Observation minus Background for matching grid points for the whole 6-days period for
water vapor bands and window channel, computed hourly
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. Assimilation of all-sky brightness temperatures (water Cloud dependent statistics evaluation: clear sky, low, medium and high level clouds

vapor and window channels) with LETKF for the
regional COSMO-DE model of Germany

e Improved understanding of how the assimilation of
water vapor sensitive infrared brightness temperatures
impacts the analysis and forecast accuracy

e Position of clouds with the assimilation of window
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techniques as it is one of the challenges in the
assimilation of satellite observations with Ensemble
KalmanFilter methods

reaching maximum values in presence of storms.
Clear-sky bias varies from -3 to -1K

The bias variability with time supports the
Implementation of time-evolving bias correction.
Ouitlier biases probably due to the presence of

- | ; i | L semi-transparent clouds. Work in progress to exclude
20} S them to the assimilation.

3. Monitoring experiments with LETKF
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8.7) brightness temperatures monitoring test case from -- ey A

2011-06-01 00:00 to 2011-06-06 12:00

Flow regimes, based on cloud evolution, during the
6-day period:

Figure 10

WV073 Assimilation Experiments

o 12 hours assimilation, hourly, from 2011-06-04 12:00 UTC to 2011-06-05 00:00 UTC

01 - high clouds initially, lots of low clouds later _ _ _ _ _ _
o bias correction value applied to the simulated observation (rather than to the real observations)
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Fig 16-18. Vertical profiles, RMSE and spread for the Control and WV073 assimilation experiments. By the end of the

assimilation period, large improvements were also evident in the relative humidity Fig. 16 field in the middle and upper
troposphere, with smaller improvements in the wind field Fig. 17 and neutral impact on temperature Fig.18

: 5. Conclusions/Outlook
I R e “Assimilation of cloud-affected brightness temperatures with an LETKF, with an adequate

bias correction, improves the analysis and the skill assimilation cycle
Figure 7 * Distinguish between ice-clouds and water-clouds

Figure 6

* Develop a time-dependent bias correction values for each cloud type (use of predictors)
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