

J10.5: Preparing Users for the Geostationary Lightning Mapper (GLM) on GOES-R

> **Steven J. Goodman** GOES-R Program Chief Scientist NOAA/NESDIS USA

95th AMS Annual Meeting 11th Annual Symposium on New Generation Operational Environmental Satellite Systems Phoenix, AZ 6 January 2015

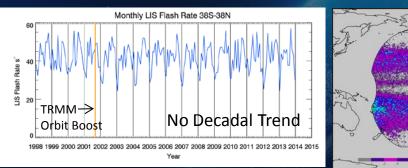
Scott Rudlosky, Geoffrey Stano, Kristin Calhoun, Lawrence Carey, Patrick Dills, Peter Roohr, Brian Motta, and James LaDue

Acknowledgments

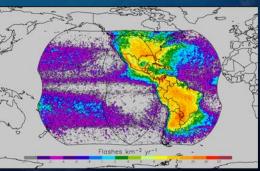
Curtis Alexander (HRRR time lagged ensembles)

GOESS R Geostationary Operational Environmental Satellite R-Series

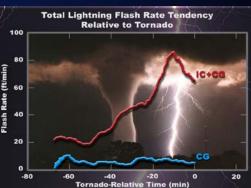
Three times greater spectral information Four times greater spatial resolution Five times faster coverage of high impact weather phenomena Real-time mapping of <u>total</u> lightning activity Real-time monitoring of space weather

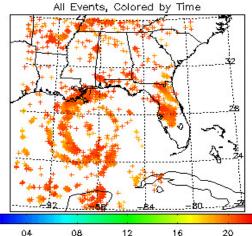

... Resulting in more timely, accurate, and actionable information leading to ...

Increased thunderstorm and tornado warning lead time Improved hurricane track and intensity forecasts More accurate detection of wildfires and volcanic eruptions Improved monitoring of solar flares and coronal mass ejections Improved geomagnetic storm forecasting

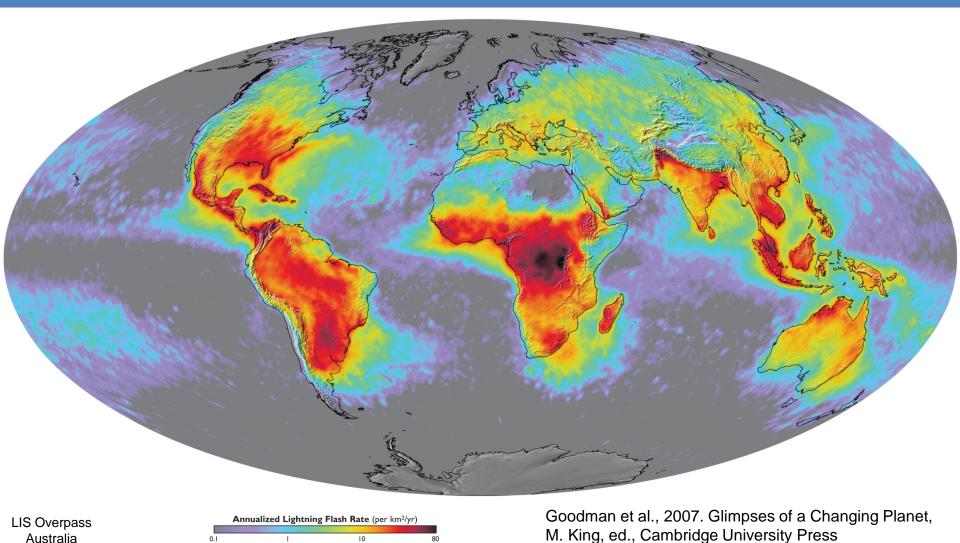


GLM Mission Benefits


- Improved forecaster situational awareness and confidence resulting in more accurate severe storm warnings (improved lead time, reduced false alarms) to save lives and property
- Diagnosing convective storm structure and evolution
- Aviation and marine convective weather hazards
- Tropical cyclone intensity change
- Decadal changes of extreme weather thunderstorms/ lightning intensity and distribution
- GLM data latency only 20 sec


Global flash rate from LIS/OTD (1995-2014)

Lightning Climatology



Hurricane Katrina

Global Distribution of Lightning Activity

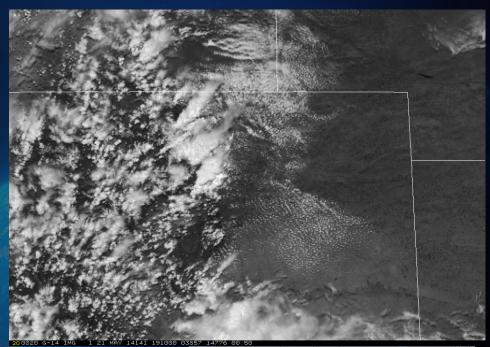
Mean annual global lightning flash rate (flashes km⁻² yr⁻¹) derived from a combined 8 years from April 1995 to February 2003. (Data from the NASA OTD instrument on the OrbView-1 satellite and the LIS instrument on the TRMM satellite.)

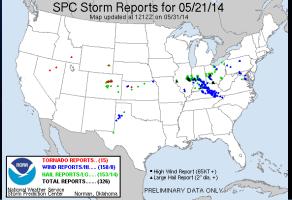
GOES-14 Super Rapid Scan Operations to Prepare for GOES-R (SRSOR)

SRSOR plans for 2015 : May 18-June 12, and August 10-22:

http://cimss.ssec.wisc.edu/goes/ srsor2015/GOES-14_SRSOR.html

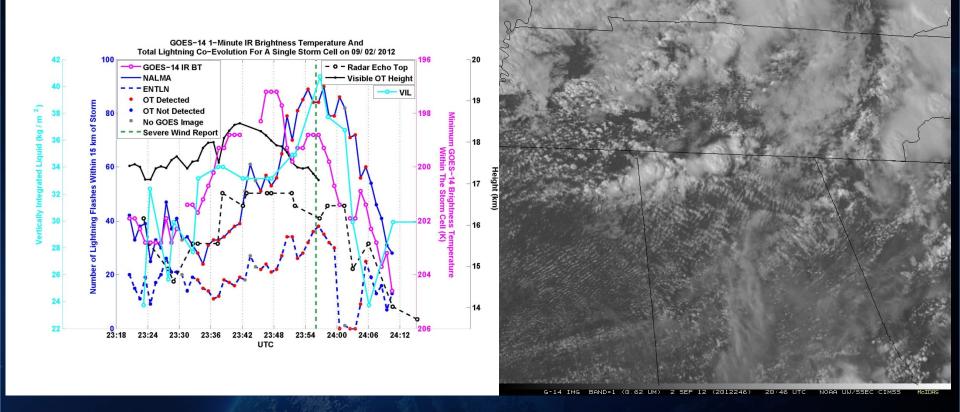
Data during parts of 2012 (Hurricane Sandy, convection), 2013 (CA Rim Fire, convection) and 2014 (Hurricane Marie, convection):


> http://cimss.ssec.wisc.edu/goes/srsor/GOES-14_SRSOR.html


http://cimss.ssec.wisc.edu/goes/srsor2013/GOES-14_SRSOR.html

http://cimss.ssec.wisc.edu/goes/srsor2014/GOES-14_SRSOR.html

GOES-14 provided very unique data and offered a glimpse into the possibilities that will be provided by the ABI on GOES-R in one minute mesoscale imagery


DIA Tornadic Storm

GOES-14 Super Rapid Scan 1-min Imagery to Prepare for GOES-R

GOES-14 IR brightness temperature, GOES-R overshooting cloud top (OT) detection algorithm output, cloud-top height derived from the length of shadow produced by OT penetration above the surrounding anvil, WSR-88D derived vertically-integrated liquid (VIL) and precipitation echo top height, and total lightning from the Northern Alabama Lightning Mapping Array (NALMA) and Earth Networks Total Lightning Network (ENTLN).

Forecaster Demonstration of 1-min Imagery

- Blog posts with SPC examples/comments on Satellite Liaison Blog: <u>http://satelliteliaisonblog.wordpress.com/</u>
 - "Post-storm initiation, the high-resolution data allowed for careful analysis of overshooting and collapsing tops, the character of the storm anvils (ie. health of the storm) and the identification of convectively generated outflows." SPC forecaster
 - Using cloud character and trends to diagnose boundary locations and motion, and nowcast their potential for either CI or influences on upshear storms to interact therewith." – SPC Forecaster
 - "Satellite imagery at 1-min temporal resolution needs to become the new standard for severe weather operations." – SPC Forecaster

Comments from HWT

- All EWP survey respondents agreed that the 1-minute imagery provided additional value compared to 5- or 15- minute imagery.
- "It allowed you to see so much more structure/trends. You could easily see areas of subsidence as cu were squashed or boundaries where things were being enhanced. – Forecaster in EWP
- "Around great lakes looking at advection fog, I wish we had 1 minute updates so we could see how much fog is spreading inland." – Forecaster in EWP
- "Cumulus clouds growing into thunderstorms on the 1 minute imagery definitely provided lead time to when storms might develop, which is great for timing watch issuance's before the storms become severe. This is not easily observed with the 5 minute or longer visible imagery." - EFP

Lightning Jump Algorithm (LJA)

IOBNAME WAF 00400 2015 PAGE: 1 SESS: 8 OUTPUT: Tue Dec9 20:39:00 2014 Total No. of Pages: 15 http://wafD1400064

MONTH 2015

CHRONIS ET AL.

1

Exploring Lightning Jump Characteristics

T. CHRONIS AND L. D. CAREY

Earth System Science Center, University of Alabama in Huntsville, Huntsville, Alabama

C. J. SCHULTZ

Earth System Science Center, University of Alabama in Huntsville, and NASA Marshall Space Flight Center, Huntsville, Alabama

E. V. SCHULTZ

Earth System Science Center, University of Alabama in Huntsville, Huntsville, Alabama

K. M. CALHOUN

Cooperative Institute for Mesoscale Meteorology Studies, Oklahoma University, and National Severe Storms Laboratory, Norman, Oklahoma

S. J. GOODMAN

NO AA/National Environmental Satellite, Data, and Information Service, Greenhelt, Maryland

(Manuscript received 13 June 2014, in final form 17 November 2014)

ABSTRACT

This study's encound with the characteristics of storms exhibiting an abupt temporal increases in the total lighting gianty (LI). An automated storm tacking method is used to identify storm "dusters" and total lighting gianty (LI). An automated storm tacking method is used to identify storm "dusters" and total lighting gianty (LI). An automated storm tacking method is used to identify storm "dusters" and total lighting gianty (LI). An automated for different injury of the shorts, and total lighting distorm the start of the storm pipel direction of the shorts and total lighting distribution. The store are giant of relation to hyperbolic constraints and total lighting distribution of the store of th

1. Introduction

The advent of ground-based lightning detection networks in recent decades has made real-time retrieval of total lightning activity [doud to ground (CG) and intradoud (IC)] available in both high spatial and temporal resolutions. Although there are uncertainties in the details (Takahashi 1978; Saunders 1993), it is known that rebounding collisions between graupel and ice crystals in the presence of supercooled water is the primary process for thunderstorm dectrification (MacGorman and Morgenetern 1998; Saunders et al. 2006; Emersic and Saunders 2010). Several studies have documented a temporal covariability between updraft mass flux, precipitation ice mass, and overall storm depth with the respective total lightning activity (e.g., Goodman et al. 1988; Carey and Rutledge 2000; Chronis et al. 2007; Deierling and Petersen 2008; Bruning and MacGorman 2013). Hence, it would be reasonable to suggest that an

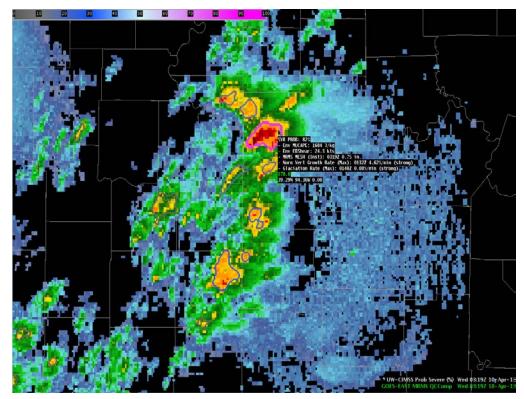
Radar Observable	Average Correlation Coefficient (ρ)	Average Normalized Standard Error (NSE)	Average Absolute Normalized Bias Error (NBE)
Graupel Echo	0.81	0.70	0.25
Volume			
Graupel Mass	0.80	0.71	0.33
30 dBZ Echo	0.79	1.24	1.56
Volume			
Updraft Volume	0.74	1.10	0.39
> 5 m s ⁻¹			
Maximum	0.66	1.51	2.21
Updraft			
Velocity			

Carey et al., 2014, Vaisala International Lightning Meteorology Conference, Tucson, AZ

Schultz et al., 2015 (this Conference)

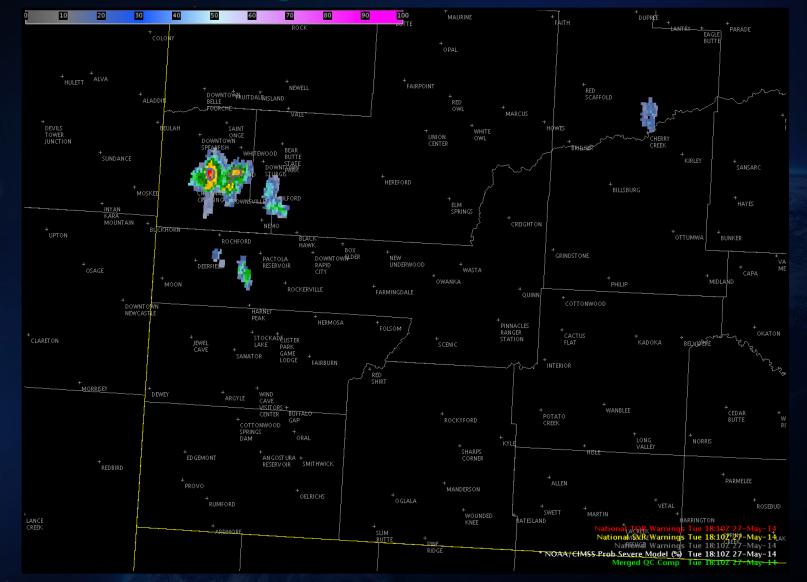
 During early growth 88% of jumps occur when both 10 m s⁻¹ updraft volume and mixed phase graupel mass growth occur

.....


Compounding author address: Themis Chronis, Earth System Science Center, University of Alabama in Huntsville, 320 Sperkman Dr., Huntsville, AL 33805. Benalt: themis chronis@easteush.edu

Probabilistic Forecasting of Severe Convection through Data Fusion

- GOES-derived cloud growth rates, NEXRAD-derived products, and NWPderived fields are used as input into a statistical model to compute the probability that a storm will first produce severe weather in the near-term
- Satellite and radar object-tracking are used to keep a history of storm development
- FY15-16 R3 project will investigate total lightning data and additional NWP sources, as well as advantages to be gained using super-rapid scan data
- The product display will complement NWS warning operations
- The product will be evaluated in testbeds and proving ground experiments


Merged radar reflectivity with model probability of severe contours. The highlighted storm had strong satellite growth rates, contributing to a high probability prior to severe hail occurrence. No warning was issued.

Help NWS forecasters skillfully increase warning lead time to severe hazards

M. Pavolonis (STAR/ASPB) and J. Cintineo (UW-CIMSS), J. Sieglaff (UW-CIMSS), D. Lindsey (STAR/RAMMB), D. Bikos (CSU-CIRA)

DAA ~ NASP

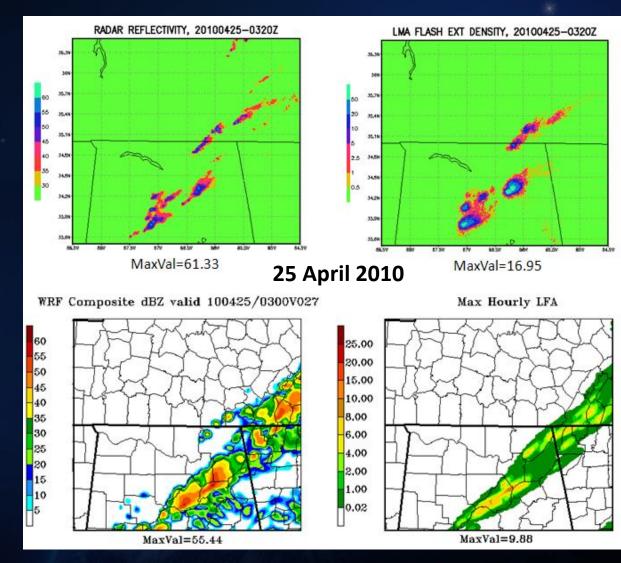
NASA

NHC Tropical Cyclone Cristina Discussion June 10, 2014

CZC MIATCDEP3 ALL TTAA00 KNHC DDHHMM

TROPICAL STORM CRISTINA DISCUSSION NUMBER6NWS NATIONAL HURRICANE CENTER MIAMI FLEP032014800 PM PDT TUE JUN 10 2014CONTRACT

Cristina is intensifying this evening. The compact central dense overcast has become more circular, and hints of an eye have been apparent in geostationary satellite images. The initial intensity is increased to 55 kt, in agreement with unanimous Dvorak classifications of 3.5/55 kt from TAFB, SAB, and UW-CIMSS ADT.


Although the curved bands beyond the inner-core region remain fragmented, a considerable amount of lightning has been occurring in a rain band located about 120 n mi to the south-southwest of the center. Recent research has documented that lightning in the outer bands of the tropical cyclone circulation is often a precursor of significant intensification. The only apparent factor that could limit strengthening during the next couple of days is mid-level dry air, which has been an issue for Cristina during the past day or so. In about 3 days, Cristina is expected to move into an environment of stronger southwesterly shear and over cooler waters, which should end the strengthening trend and cause the cyclone to weakers. The NHC intensity forecast is slightly higher than the previous one

🗲 🧼 C 🗋 rapio	drefresh.noaa.g	gov/HRR	R/W	elco	me.c	gi														
Current and Forecast Graphics NCEP HRRR 30-day Evaluation:	HRRR Model Fi Model: HRRR-prir					Aug	2014	- 12Z			F	IRR	R F	ore	eca	st F	iel	ds		
NCEP HRRR Parallel Hourly NCEP HRRR Parallel Subhourly	Model: HRRR-prim	nary		`	D	omain	: Ful	I		Di Di		13 Aug	2014	- 12Z	¥					
Experimental ESRL HRRR:						_	_				Valid	Time								
ESRL HRRR Hourly				Wed	Wed	Wed	Wed	Wed	Wed	Wed	Wed	Wed	Wed		Wed	Thu	Thu	Thu	Thu	
ESRL HRRR Subhourly ESRL HRRR (alternative)				12	13	14	15	16	17	18	19	20	21	22	23	00	01	02	03	
ESRL HRRR-Aviation Hourly		All	Loon			_	_				Fore	cast								
ESRL HRRR-Aviation		times	Loop	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	
Subhourly	all fields																			all fields
ESRL HRRR Soundings	1 km agl reflectiv	vity																		1 km agl reflectivity
ESRL HRRR-chem-fire (W	composite reflect	-																		composite reflectivity
US) ESRL HRRR Reflectivity	ensemble com																			
Matrix	reflectivity	· ·																		ensemble comp reflectivity
	max 1 km agl refle	ctivity																		max 1 km agl reflectivity
HRRR Configuration Info	surface CAPE																			surface CAPE
CONUS-HRRR domain parms HRRR static fields inc lat/lon	surface CIN																			surface CIN
(NetCDF-952 MB)	mixed CAPE																			mixed CAPE
WFIP-HRRR domain	most unstable CA	APE																		most unstable CAPE
CONUS-HRRR terrain info	most unstable layer	CAPE																		most unstable layer CAPE
HRRR WPS Namelist	best LI																			best LI
HRRR WRF Namelist HRRR GRIB2 Table 2-D Hourly	LCL																			LCL
HRRR GRIB2 Table 2-D 15 min	0-1 km shear																			0-1 km shear
HRRR GRIB2 Table Native	0-8 km shear																			0-8 km shear
HRRR GRIB2 Table Press	0-1 km helicity, st										_									0-1 km helicity, storm
HRRR-NCEP GRIB2 Table 2-D	motion																			motion
Hourly HRRR-NCEP GRIB2 Table 2-D	0-3 km helicity, st	torm																		0-3 km helicity, storm
15 min	motion																			motion
HRRR-NCEP GRIB2 Table	2-5 km updraft he	licity																		2-5 km updraft helicity
Native	1-8 km updraft he	licity																		1-8 km updraft helicity
HRRR-NCEP GRIB2 Table Press USDS/DAB disease is of	2-5 km max upd helicity	raft																		2-5 km max updraft helicity
<u>HRRP/RAP diagnosis of</u> <u>output fields</u> Rapid Refresh web page	1-6 km max upd helicity	iraft																		1-6 km max updraft helicity
RUC GRIB viewer	ensemble updraft h	elicity																		ensemble updraft helicity
HRRR FAQ page	convective activi	ity 1																		convective activity 1

ANIONAL ENVIRONMENTA.	*			
HRRR Status	convective activity 2			convective activity 2
HRRR Status	convective activity 3	HRRR Forecast Fields		convective activity 3
HRRR Status (Past 24 hrs)	convective initiation 1			convective initiation 1
HRRR Dev1 Status HRRR Dev1 Status (Past 24	convective initiation 2			convective initiation 2
hrs)	convective initiation 3			convective initiation 3
HRRR Dev2 Status	lightning threat 1			lightning threat 1
HRRR Dev2 Status (Past 24	lightning threat 2			lightning threat 2
hrs)	lightning threat 3			lightning threat 3
RAP-ESRL (HRRR Parent) RAP Dev1 (HRRR Dev1	max vert int graupel			max vert int graupel
Parent)	max 10m wind			max 10m wind
	10m wind	Lightning Threat 3 used for Prob		10m wind
HRRR Convective	10m wind gust			10m wind gust
Probabilities	80m wind	LTG forecast out to 9 hours		80m wind
HCPF	1h 80m wind speed			
Soundings	change			1h 80m wind speed change
Interactive (Java)	ensemble 1h 80m wind			ensemble 1h 80m wind
(betarestricted)	speed change			speed change
	skin temp			skin temp
Verification	2m temp			2m temp
Composite Reflectivity Composite Reflectivity	2m potential temp			2m potential temp
Status	2m temp - skin temp			2m temp - skin temp
24 Hour Precipitation	2m dew point			2m dew point
24 Hour Precipitation Status	2m RH			2m RH
Other Products	surface pressure			surface pressure
NCEP Model Products	3h pressure change			3h pressure change
(GFS,etc.)	precipitable water			precipitable water
10.0,000.7	snow water equiv		<u> </u>	snow water equiv
Organization	max updraft			max updraft
AMB Staff	max downdraft			max downdraft
Sponsors	500mb temp			500mb temp
ESRL/GSD	500mb vort			500mb vort
Description	250mb wind			250mb wind
HRRR Changes Apr 2014	visibility			visibility
HRRR Home Page	total cloud cover			total cloud cover
NWS Discs Using HRRR	low-level cloud cover			low-level cloud cover
RUC/RR/FIM Pubs	mid-level cloud cover			mid-level cloud cover
HRRR ChangeLog HRRRdev ChangeLog	high-level cloud cover			high-level cloud cover
THE CONTRACTOR	cloud top height			cloud top height
Other Information	ceiling			ceiling
NCEP product status	echotop height			echotop height
NCEP obs processing	VIL			VIL
NCEP status messages	RADAR VIL			RADAR VIL
	TO DATE VIE			TO CONTROLL

Short-range NWP Forecasts of Lightning with NSSL WRF

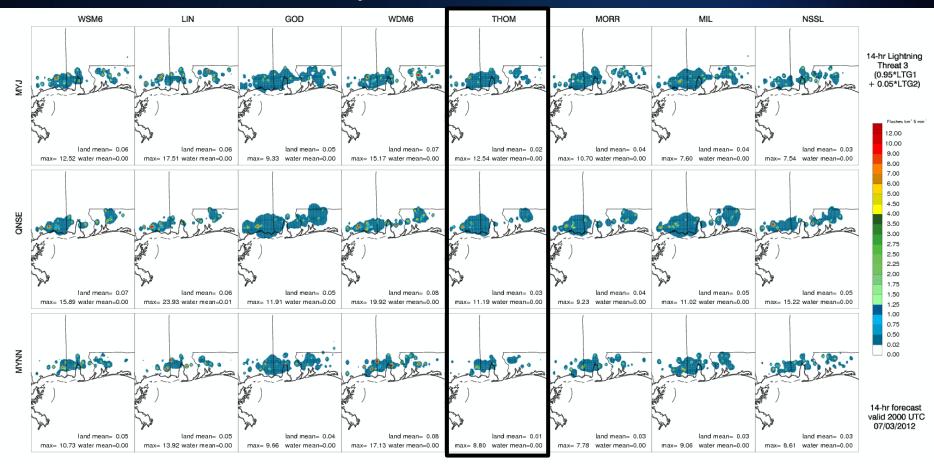
Lightning Forecast Algorithm (LFA) Methodology

- Compare WRF forecasts of graupel flux (GFX) at -15C (main neg charge region) to LMA observations of peak FRD within storm outbreaks
- Find best linear fit of peak WRF proxy to LMA peak FRD
- Generate additional WRF LTG proxy using vertically integrated ice (VII), and rescale its peak value to match that from GFX
- Threshold GFX to zero where GFX < 1.5
- Create a blend of GFX and VII threats to achieve correct threat areal coverage (0.95) GFX + (0.05) VII

Radar Observable	Average Correlation Coefficient (ρ)	Average Normalized Standard Error (NSE)	Average Absolute Normalized Bias Error (NBE)
Graupel Echo Volume	0.81	0.70	0.25
Graupel Mass	0.80	0.71	0.33
30 dBZ Echo Volume	0.79	1.24	1.56
Updraft Volume > 5 m s ⁻¹	0.74	1.10	0.39
Maximum Updraft Velocity	0.66	1.51	2.21

Carey et al., 2014, Vaisala International Lightning Meteorology Conference, Tucson, AZ

CAPS 2011 Experiments

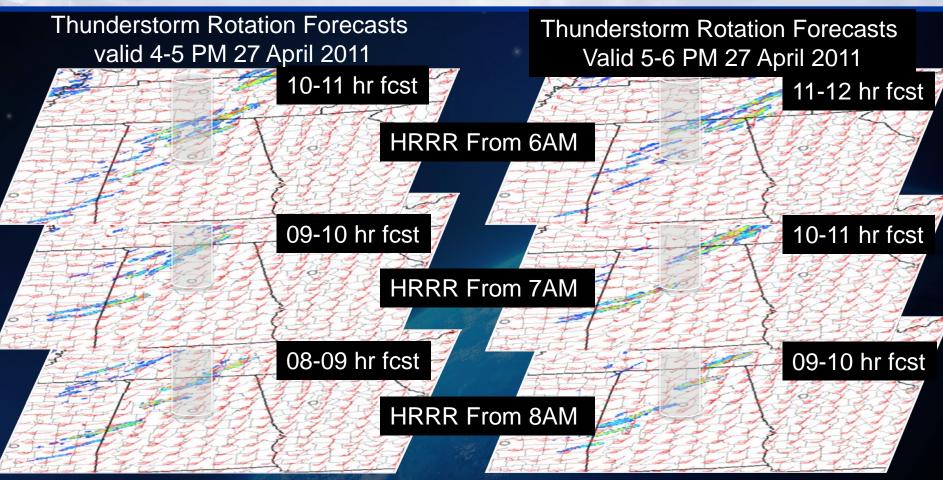

Mode	IC (arw_cn+)	BC	mic	ro-Physics	LSM	PBL
S4cn	+00zARPSa	00zNAMf		Thompson	Noah 🗮	MYJ
S4m4	+em-p1 pert	21zSREF em	p1	Morrison	RUC	YSU
S4m5	+em-p2 pert	21zSREF em	p2	Thompson	Noah	QNSE
S4m6	+nmm-p1 pert	21zSREF nm	n-p1	WSM6	RUC	QNSE
S4m7	+nmm-p2 pert	21zSREF nm	n-p2	WDM6	Noah	MYNN
S4m8	+rsm-n1 pert	21zSREF rsm	n1	Ferrier	RUC	YSU
S4m9	+eKF-n1 pert	21zSREF eKF	n1	Ferrier	Noah	YSU
S4m10	+eKF-p1 pert	21zSREF eKF	p1	WDM6	Noah	QNSE
S4m11	+eBMJ-n1 prt	21zSREF eBN	lJ-n1	. WSM6	RUC	MYNN
S4m12	+eBMJ-p1 prt	21zSREF eBN	IJ-p1	Thompson	RUC	MYNN
S4m13	+rsm-p1 pert	21zSREF rsm	·p1	M-Y	Noah	MYJ
S4m14	+em-n1 pert	21zSREF em-	n1	Ferrier+	Noah	YSU
S4m15	+em-n2 pert	21zSREF em-	n2	WSM6	Noah	MYNN
S4m16	+nmm-n1 pert	21zSREF nm	n-n1	Ferrier+	Noah	QNSE
S4m17	' +nmm-n2 pert	21zSREF nm	n-n2	2 Thompson	Noah	ACM2
S4m18	+rsm-p2 pert	21zSREF rsm	·p2	WSM6	Noah	MYJ
S4m19	+rsm-n1 pert	21zSREF rsm	n1	M-Y	Noah	MYJ
S4m20	+rsm-n2 pert	21zSREF rsm	n2	M-Y	RUC	ACM2

LFA Findings

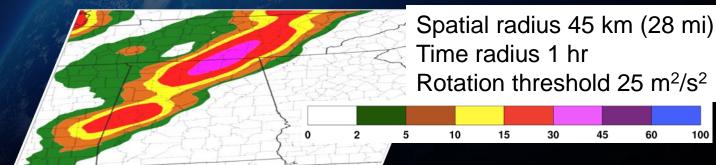
Sample snapshot of output from MOB 20120703 run shows variability of LFA flash rate densities

HRRR Time-Lagged Ensemble Technique

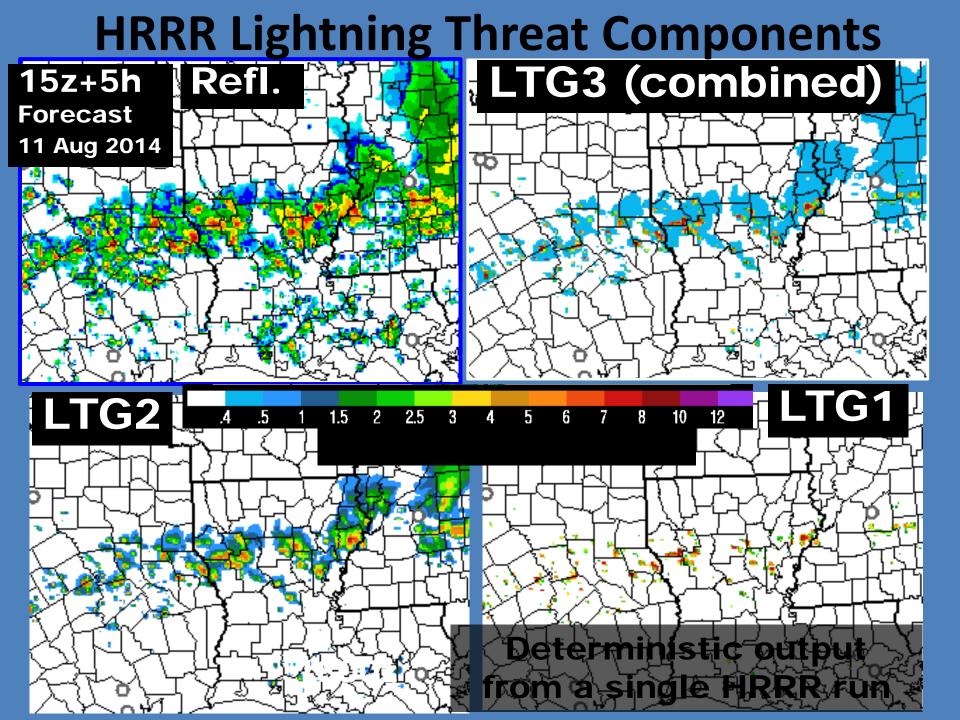
Determine hazard field "predictor" and threshold
 multiple and conditional thresholds possible
 diurnal and other dependence for bias correction


2. Select appropriate search radius (kernel)
-- regional, diurnal, forecast length, other dependencies

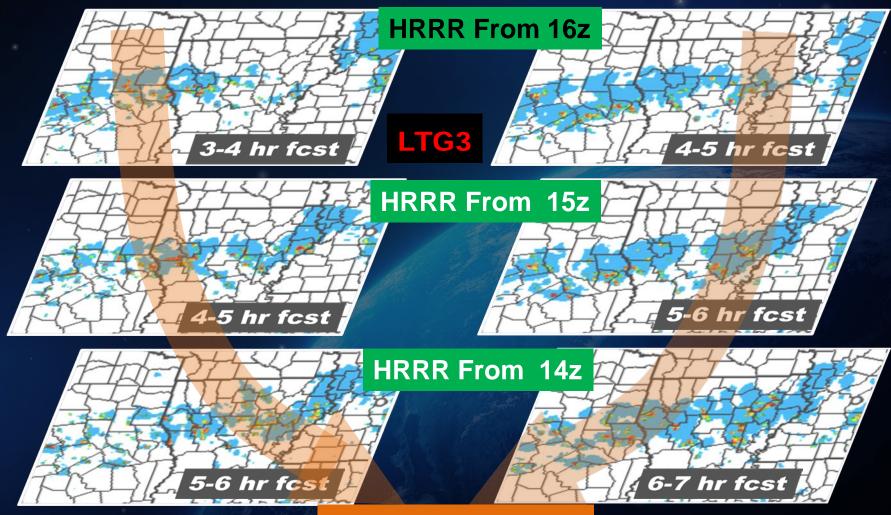
3. Select number of time-lagged ensemble members
-- typically use "hourly summed" fields and two bracketing hours from each forecast (accounts for timing errors)


4. Tally over neighborhood points among ensemble members, with adjustment to ensure reliability

5. Forecast horizon out to 9 hours


HRRR Time-Lagged Ensemble Example

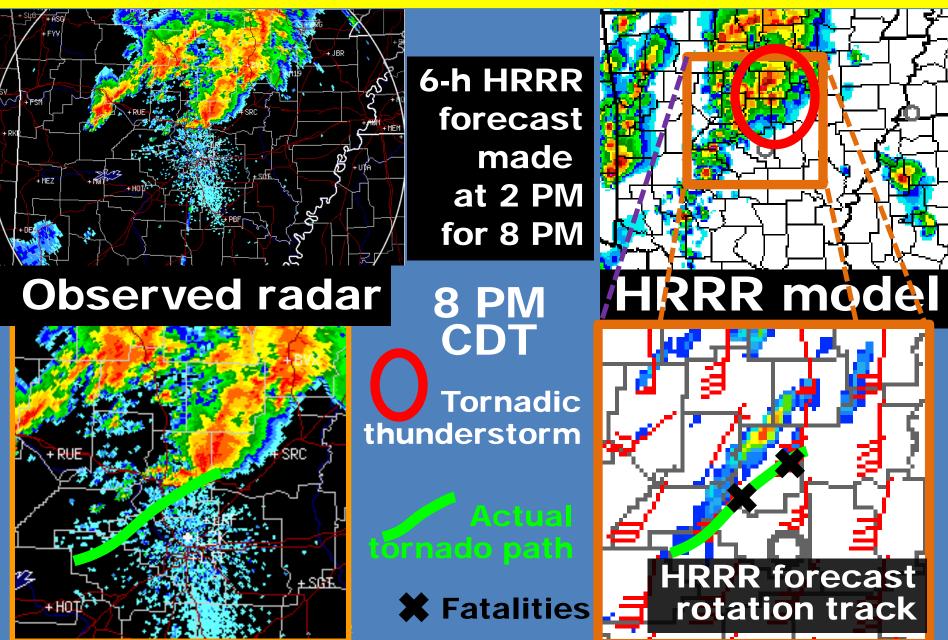
All six forecasts combined to form probabilities valid 5 PM 27 April 2011


100

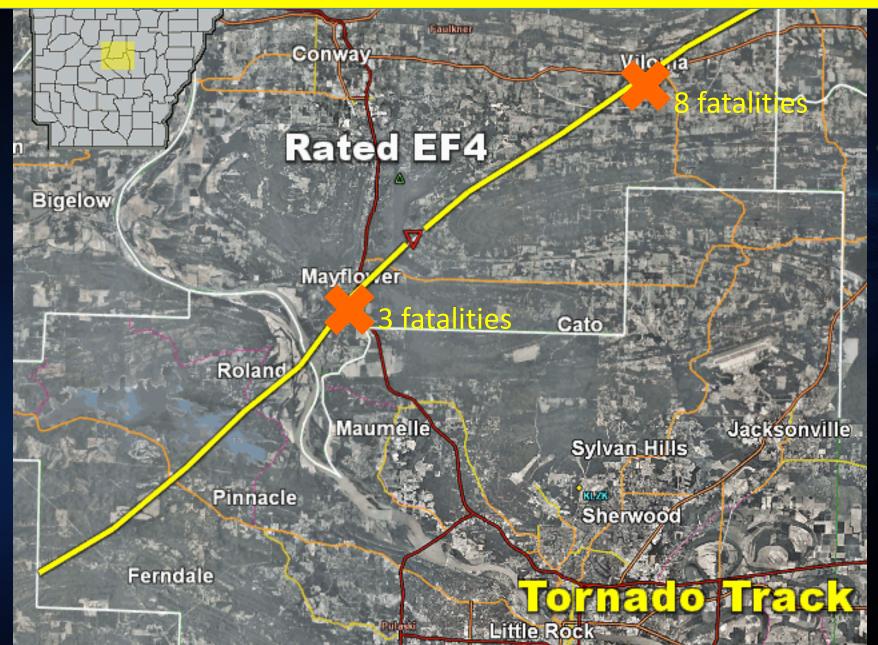
HRRR Time-Lagged LTG Ensemble

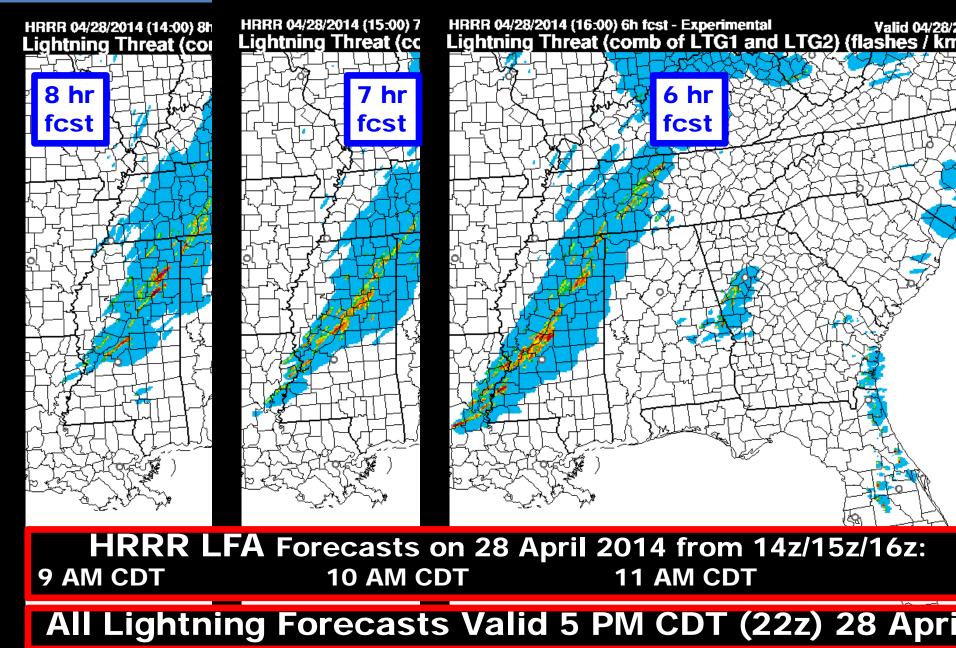
Combined lightning risk valid 19-20 z 11 Aug 2014

Combined lightning risk valid 20-21 z 11 Aug 2014



six forecasts combined


HRRR lightning threat probability

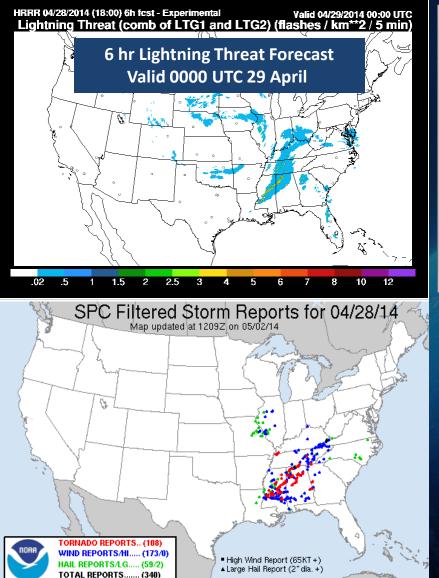

Spatial filter applied to each forecast

Arkansas Tornadoes – Sunday 27 April 2014

Arkansas Tornadoes – Sunday 27 April 2014

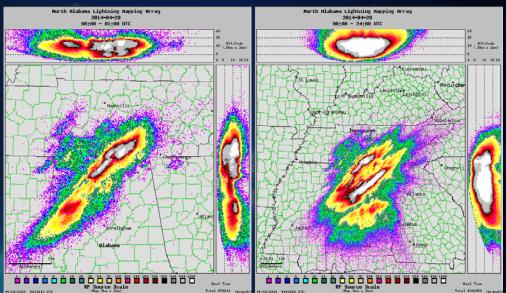
.02

1.5



1

ы



PRELIMINARY DATA ONLY

National Weather Service Storm Prediction Center

Norman, Oklahoma

Observed Total Lightning (left, 2300 UTC 28 April; right, 24 hr period ending 0000 UTC 29 April)

2056 UTC: EF-1 WITH PEAK WIND SPEEDS OF 110 MPH. PATH LENGTH 3.2 MILES. MAXIMUM PATH WIDTH OF 50 YARDS (NW Alabama).

2305 UTC: TREES AND POWERLINES DOWN (Madison, Alabama).

0000 UTC: TREES DOWN ALONG HIGHWAY 82 JUST EAST OF HIGHWAY 12. WINDS ESTIMATED ABOUT 75-80 MPH. REPORTED BY SPOTTER (NE Mississippi).

HOME

	ПОЛЯ
NASA	
	OF AFTRAMENT OF C

Have an acco

MY METED

Sign Up

ABOUT

RESOURCES

Lesson/Resource Listing » Description

EDUCATION & TRAINING

GOES-R GLM: Introduction to the Geostationary Lightning Mapper

COMMUNITIES

Outline the process of converting GLM observations to a lightning flash product

- Describe how GLM observations will help improve situational awareness and severe weather warning decision support
- · Explain how GLM observations will improve warnings of impending lightning hazards
- Describe how GLM observations will benefit various application areas, such as aviation, quantitative

- GOES-R is coming Launch early 2016
- New sensors, products, and services will help improve forecasts and increase lead times for warnings and decision makers
- Presents Challenges and Opportunities for model assimilation, data fusion and tools
- Product testing as soon as 2 months post-launch, also available to users for science assessment
- User preparation is essential to take advantage of the advanced capabilities to support a Weather Ready Nation - Hemisphere - World

Geostationary Operational Environmental Satellite - R Series

Thank you!

For more information visit www.goes-r.gov

CONNECT WITH US !

www.facebook.com/ GOESRsatellite

The next-generation of geostationary environmental satellites

Advanced imaging for accurate forecasts

Real-time mapping of lightning activity

Improved monitoring of solar activity

https://www.youtube.com/user/ NOAASatellites

https://twitter.com/NOAASatellites

Spacecraft image courtesy of Lockheed Martin