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Geostationary Operational Environmental Satellite R-Series

Three times greater spectral information
Four times greater spatial resolution
Five times faster coverage of high impact weather phenomena
Real-time mapping of total lightning activity
Real-time monitoring of space weather

.. Resulting in more timely, accurate, and actionable information leading to ...

Increased thunderstorm and tornado warning lead time
Improved hurricane track and intensity forecasts
More accurate detection of wildfires and volcanic eruptions
Improved monitoring of solar flares and coronal mass ejections
Improved geomagnetic storm forecasting



Improved forecaster situational awareness and confidence
resulting in more accurate severe storm warnings (improved : °
lead time, reduced false alarms) to save lives and property

Diagnosing convective storm structure and evolution

e Aviation and marine convective weather hazards

Tropical cyclone intensity change

Decadal changes of extreme weather — thunderstorms/
lightning intensity and distribution

GLM data latency only 20 sec
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Global Distribution of Lightning Activity

Goodman et al., 2007. Glimpses of a Changing Planet,
M. King, ed., Cambridge University Press

Annualized Lightning Flash Rate (per km2/yr)

LIS Overpass
Australia 0l

Mean annual global lightning flash rate (flashes km-? yr-1) derived from a combined 8
years from April 1995 to February 2003. (Data from the NASA OTD instrument on the
OrbView-1 satellite and the LIS instrument on the TRMM satellite.)
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GOES-14 Super Rapid Scan Operations & &
to Prepare for GOES-R (SRSOR)

SRSOR plans for 2015 : May 18- DIA Tornadic Storm
June 12, and August 10-22:
http://cimss.ssec.wisc.edu/goes/ g -2
srsor2015/GOES-14_SRSOR.html

Data during parts of 2012 (Hurricane
Sandy, convection), 2013 (CA Rim Fire,
convection) and 2014 (Hurricane Marie,

convection):

http://cimss.ssec.wisc.edu/goes/srsor/GOES-
14 SRSOR.html

http://cimss.ssec.wisc.edu/goes/srsor2013/GOES-

14 SRSOR.htm/ 20 0026 5714.'1% "1‘.2.1"»1%-\7 ;31:1: 191008 03857 14776 0650 i S =
. ) SPC Storm Reports for 05/21/14
http://cimss.ssec.wisc.edu/goes/srsor2014/GOES- ep uptuted 1212200n 0591

14_SRSOR.html

GOES-14 provided very unique data and
offered a glimpse into the possibilities
that will be provided by the ABI on GOES-
R in one minute mesoscale imagery



GOES-14 Super Rapid Scan 1-min s
Imagery to Prepare for GOES-R

GOES=-14 1-Minute IR Brightness Temperature And
Total Lightning Co—Evolution For A Single Storm Cell on 09/ 02/ 2012
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GOES-14 IR brightness temperature, GOES-R overshooting cloud top (OT) detection algorithm output, cloud-top height
derived from the length of shadow produced by OT penetration above the surrounding anvil, WSR-88D derived
vertically-integrated liquid (VIL) and precipitation echo top height, and total lightning from the Northern Alabama
Lightning Mapping Array (NALMA) and Earth Networks Total Lightning Network (ENTLN).
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Forecaster Demonstration of 1-min Imagery

e Blog posts with SPC examples/comments on Satellite Liaison Blog:

“Post-storm initiation, the high-resolution data allowed for careful analysis of overshooting and
collapsing tops, the character of the storm anvils (ie. health of the storm) and the identification of
convectively generated outflows.” - SPC forecaster

Using cloud character and trends to diagnose boundary locations and motion, and nowcast their
potential for either Cl or influences on upshear storms to interact therewith.” — SPC Forecaster

“Satellite imagery at 1-min temporal resolution needs to become the new standard for severe
weather operations.” — SPC Forecaster

e Comments from HWT

All EWP survey respondents agreed that the 1-minute imagery provided additional value compared
to 5- or 15- minute imagery.

“It allowed you to see so much more structure/trends. You could easily see areas of subsidence as cu
were squashed or boundaries where things were being enhanced. — Forecaster in EWP

“Around great lakes looking at advection fog, | wish we had 1 minute updates so we could see how
much fog is spreading inland.” — Forecaster in EWP

“Cumulus clouds growing into thunderstorms on the 1 minute imagery definitely provided lead time
to when storms might develop, which is great for timing watch issuance's before the storms become
severe. This is not easily observed with the 5 minute or longer visible imagery.” - EFP


http://satelliteliaisonblog.wordpress.com/
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Carey et al., 2014, Vaisala International Lightning
Meteorology Conference, Tucson, AZ

Schultz et al., 2015 (this Conference)

e During early growth 88% of jumps occur
when both 10 m st updraft volume and
mixed phase graupel mass growth occur




@ Probabilistic Forecasting of Severe Convection
through Data Fusion

*  GOES-derived cloud growth rates,
NEXRAD-derived products, and NWP-
derived fields are used as input into a
statistical model to compute the
probability that a storm will first produce
severe weather in the near-term

* Satellite and radar object-tracking are used
to keep a history of storm development

 FY15-16 R3 project will investigate total
lightning data and additional NWP sources,
as well as advantages to be gained using
super-rapid scan data

* The product display will complement NWS
warning operations

* The product will be evaluated in testbeds Merged radar reflectivity with model probability of severe

and proving ground experiments contours. The highlighted storm had strong satellite growth rates,
contributing to a high probability prior to severe hail occurrence.
No warning was issued.

Help NWS forecasters skillfully increase warning lead time to severe hazards

M. Pavolonis (STAR/ASPB) and J. Cintineo (UW-CIMSS), J. Sieglaff (UW-CIMSS), D. Lindsey
(STAR/RAMMB), D. Bikos (CSU-CIRA)
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NHC Tropical Cyclone Cristina
Discussion
June 10, 2014

a considerable amount of lightning has been occurring
in a rain band located about 120 n mi

to the south-southwest of the

center. Recent research has documented that lightning in the
outer bands of the tropical cyclone circulation 1s often a precursor

of significant intensification.




HRRR Model Fields - Expe > N W
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Short-range NWP Forecasts of
Lightning with NSSL WRF

RADAR REFLECTIVITY, 20100425-0320Z LMA FLASH EXT DENSITY, 20100425-03207

oy 1

MaxVal=61.33

o T e (07 17 i Cad

25 April 2010 Max\Val=16.95

WRF Composite dBZ valid 100425 /0300V027 Max Hourly LFA

MaxVal=55.44 MaxVal=9.88
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Lightning Forecast Algorithm (LFA) @&

Methodology

Compare WRF forecasts of graupel flux

(GFX) at -15C (main neg charge region) to

LMA observations of peak FRD within
storm outbreaks

Find best linear fit of peak WRF proxy to

LMA peak FRD

Generate additional WRF LTG proxy using
vertically integrated ice (VII), and rescale

its peak value to match that from GFX

Threshold GFX to zero where GFX< 1.5

Create a blend of GFX and VIl threats to

achieve correct threat areal coverage

(0.95) GFX + (0.05) VII

Radar Average Average Average
Observable Correlation Normalized Absolute
Coefficient (p) | Standard Error Normalized
(NSE) Bias Error
(NBE|)

Graupel Echo Q0 0.70 25
Volume
0

81 ).

30dBZ Echo 0.7 1.24 1.56
Updraft Volume | 0,74 1.10 39

2

Maxinmum 0.66 1.51 2.2
Updraft

Velocity

Carey et al., 2014, Vaisala International Lightning
Meteorology Conference, Tucson, AZ
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LFA Findings

Sample snapshot of output from MOB 20120703 run shows
variability of LFA flash rate densities
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¥ HRRR Time-Lagged Ensemble Technique

1. Determine hazard field “predictor” and threshold
-- multiple and conditional thresholds possible
-- diurnal and other dependence for bias correction

2. Select appropriate search radius (kernel)
-- regional, diurnal, forecast length, other dependencies

3. Select number of time-lagged ensemble members
-- typically use “hourly summed” fields and two bracketing
hours from each forecast (accounts for timing errors)

4. Tally over neighborhood points among ensemble
members, with adjustment to ensure reliability

5. Forecast horizon out to 9 hours



¢ HRRR Time-Lagged Ensemble Example

Thunderstorm Rotation Forecasts
] valld 4 5PM 27Apr|I 2011

Thunderstorm Rotation Forecasts
Val|d 5 6 PM 27 Aprll 2011

— 11 121 hr fcst

—— -...——"'l\.

All six forecasts F g 9 a8 Spatlal radius 45 km (28 mi)
combined to form = == >5” '~ — Timeradius 1 hr

probabilities valid < Rotation threshold 25 m?/s?
5 PM 27 April 2011 &=, - HEEE I s
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15z+5h
Forecast

|

11 Aug 2014




HRRR Time-Lagged LTG Ensemble

Combined lightning risk Combined lightning risk
valid 19-20 z 11 Aug 2014 valid 20-21 z 11 Aug 2014

SiX forecasts Spatial filter applied
combined to each forecast
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Lightning Threat Forecast
NOAA High Resolution (3 km) Rapid Refresh

HRRR 04/28/2014 {18:00} 6h icst - Experimental Valid 04/29/2014 00:00 UTC

Li htni% Threat comb of LTG‘1-€nd LTG2 ﬂasI'IeS Ikm**2/5 min

6 hr Lightning Threat Forecast
Valid 0000 UTC 29 April L’

SPC Filtered Storm Reports for 04/28/14

bap updated|at 12092 on 05/02/14

TORMADO REPORTS.. {108)

WIND REPORTSAL..... (173/0) o et W) F(ESKT +)
igh Wind Repor +

HAIL REPORTSAG..... {59/2) « Large Hail Feport (2" dia, +)

TOTAL REPORTS {340)

g?girﬁ?r\g i%!lpgrru %'}1‘?3? Morman, Oklshoma PRELRARRR: DETE GHLY

Morth Hlabana Lightning Happing Hrray

spﬂ?gﬂhﬂﬂfiﬁ\ﬁﬁ‘ﬂ . C _s_ﬂﬂfiﬁ\ﬁ'ﬁ‘ﬂ .

Observed Total Lightning (left, 2300 UTC 28 April; right,
24 hr period ending 0000 UTC 29 April)

2056 UTC: EF-1 WITH PEAK WIND SPEEDS OF 110 MPH.
PATH LENGTH 3.2 MILES. MAXIMUM PATH WIDTH OF 50
YARDS (NW Alabama).

2305 UTC: TREES AND POWERLINES DOWN (Madison,
Alabama).

0000 UTC: TREES DOWN ALONG HIGHWAY 82 JUST EAST OF
HIGHWAY 12. WINDS ESTIMATED ABOUT 75-80 MPH.
REPORTED BY SPOTTER (NE Mississippi).
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GOES-R GLM: Introduction to the Geostationary
Lightning Mapper
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Take the quiz?

F.r_‘_..‘_ A

Describe how GLM observations will help improve situational awareness and severe weather waming
decision support

Explain how GLM ohservations will improve wamings of impending lightning hazards

Describe how GLM observations will benefit various application areas, such as aviation, quantitative



Summary
GOES-R is coming - Launch early 2016

New sensors, products, and services will help
improve forecasts and increase lead times for
warnings and decision makers

Presents Challenges and Opportunities for model
assimilation, data fusion and tools

Product testing as soon as 2 months post-launch,
also available to users for science assessment

User preparation is essential to take advantage of
the advanced capabilities to support a Weather
Ready Nation - Hemisphere - World
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GOE R - Thank Vou!é’

Geostatronary Operat:grlgLEn trt)‘ﬁ’-’rxtal Satellite - R Senes_

For more information
visit www.goes-r.gov

CONNECT Ty

o SRR www.facebook.com/
4 G GOESRsatellite
The next-generation of geostationary - g
environmental satellites https://www.youtube.com/user/

NOAASatellites

https://twitter.com/NOAASatellites

< B < https://www.flickr.com/photos/

Advanced imaging Real-time mapping Improved monitoring -
for accurate forecasts of lightning activity of solar activity noaasatell ItES/
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Spacecraft image courtesy of Lockheed Martin
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