Real-time wind power forecasting for grid operations using numerical weather model in Jeju

Introduction

This study is the first attempt to estimate the capability of real-time forecasting of potential wind power over Jeju island in HanGyeong, based on the state-of-the-art numerical model and hybrid statistical model module for appropriate target lead time.

Three domains constructing WRF triple-nesting system

	Domain 1	Domain 2	
Horizontal Grid	15 km (112X104)	5 km (115X124)	
Convection	Kain-Fritsch	Kain-Fritsch	
Microphysics	WSM6	WSM6	
Longwave	RRTM	RRTM	
Shortwave	Dudhia	Dudhia	

Short-term prediction by statistical model

ECOBRAIN Co., Ltd Seoul, South Korea

Young-Mi Lee J. P. Jo / J. K. Park

Objectives

Statistical model

el	Wind Farm	Definition of variables	Symbol
ombined ()	Dependent variables	Error of predicted wind speed by ARIMA	DIFF
<section-header><section-header><text></text></section-header></section-header>		Predicted wind speed by ARIMA	WS_ARIMA
	Independent variables	Wind speed 10 minutes ago	WS_10
		Wind direction 10 minutes ago	WD_10
		The latest pressure	Р
	Neural network model combine	ed with ARIMA for wind speed prediction	

95TH ANNUAL MEETING AMERICAN METEOROLOGICAL SOCIETY : 4-8 January 2015 PHOENIX, ARIZONA

http://www.ecobrain.net ecobrain@ecobrain.net

Methods Producing high-quality **Power Prediction** meteorological information numerical weather model New Power Curve Fine-scale topography and land use data from wind farm Global Forecasting System data based on historical optimization data m/s (0) (5) (10) (15) (20) (25) Wind Speed Adjustment to reduce the physical error vvind speed PBL and LS schemes Physical Model atistical Adjustment Wind direction educe the systemati WRF or of numerical model Name Loss according to position
Variation of wind direction EXP1 Short - term Wind power EXP2 prediction information EXP3 EXP4

Results

Optimization

Experimental design for the sensitivity test of

. schemes		Land Surface schemes		
J	MYJ	Thermal diffusion	Noah	
		Ο		
			0	
	0	Ο		
	Ο		0	

Summary of basic statistics derived from observation and the four experiments

		OBS	EXP1	EXP2	EXP3	EXP4
Wind Speed (m/s) Average	Jan	5.2	5.9	6.0	6.1	6.1
	Jul	4.2	4.4	4.5	4.7	4.9
Wind Speed (m/s) Standard Deviation	Jan	4.0	3.8	3.7	3.7	3.8
	Jul	2.6	3.0	2.9	3.9	2.9
Wind Direction (o) Average	Jan	338	340	340	341	344
	Jul	163	175	174	174	176

Economic Value

The economic value of wind power forcasting in the Korean electricity market

Korean electricity market

- Based on CBP(Cost-Based Pool)
- Day-ahead market
- Constrained-on(CON) and Constrained-off(COFF) generation

How many percent can we reduce costs(only COFF) by using wind power prediction system?

Decrease of COFF by using wind power prediction system

