
New York State Resilience Institute for Storms and Emergencies (NYS RISE): Translate Weather and Climate Research to Actions

> Minghua Zhang, Edmund Chang, Brian Colle School of Marine and Atmospheric Sciences Stony Brook University

> > And

Other NYS RISE Investigators

Consortium of 5 Universities and 1 National Lab in New York State

Stony Brook University New York University Columbia University Cornell University City University of New York Brookhaven National Laboratory

Co-Directors: Minghua Zhang, School of Marine and Atmospheric Sciences, SBU Bud Griffis, School of Engineering, NYU

Mission

- 1. To inform critical decisions before, during, and after extreme weather events
- 2. To quantify vulnerability and resilience in infrastructures, ecosystems, and operations to storms.
- 3. To speed up translation from research on preparedness to application
- 4. To aid recovery efforts from Superstorm Sandy

Four Initial Areas

- 1. Rapid Response
- 2. Cascading Dynamics of Water and Infrastructure
- 3. Vulnerability Assessment and Resilience Strategies
- 4. Storm and Environmental Risks under Climate Change

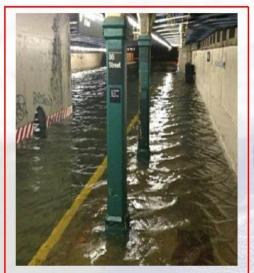
1. Rapid Response

Assessment of readiness plans to weather events Scenario-driven short-term evacuation modeling Enhancements to long lead forecasting Rapid warning system enhancements **Current Plans and Practices in NYS:**

Hazard Mitigation Plans for State, County and Towns **Ranked from Best to Worst:** Plan Basics (1) **Participation (2)** Goals (3) **Inter-Organizational Coordination** Hazard Identification and Risk Assessment **Capability Assessment (-3)** Monitoring (-2) **Proposed actions and Implementation Information (-1)**

(Bud Griffis)

Workshop on Hazardous Weather Communication Sponsored By: AMS Long Island/NYC Chapter, NOAA/National Weather Service and Stony Brook University

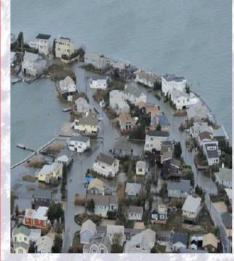

When:	Tuesday, November 1	18 th ,	7-9 PM *
-------	---------------------	--------------------	----------

- Where: The New York State Center of Excellence in Wireless and Information Technology, Stony Brook University, Stony Brook, NY (see map below)
 - What: Communication is critical step in the severe warning and decision process. Hear from a panel of experts below on the latest approaches, issues, and potential solutions for extreme weather events.

Led by Brian Colle

Emergency Management

John Bruckbauer, Deputy Commissioner Office of Emergency Management Nassau County



Source: NHC Report/Flickr

Emergency Management Edward Schneyer

Director of Emergency Preparedness Suffolk County **Media Communication**

Rich Hoffman News 12 Meteorologist

Source: Newsday

Science Communication

Christine O'Connell Center for Communicating Science Stony Brook

Led by Brian Colle

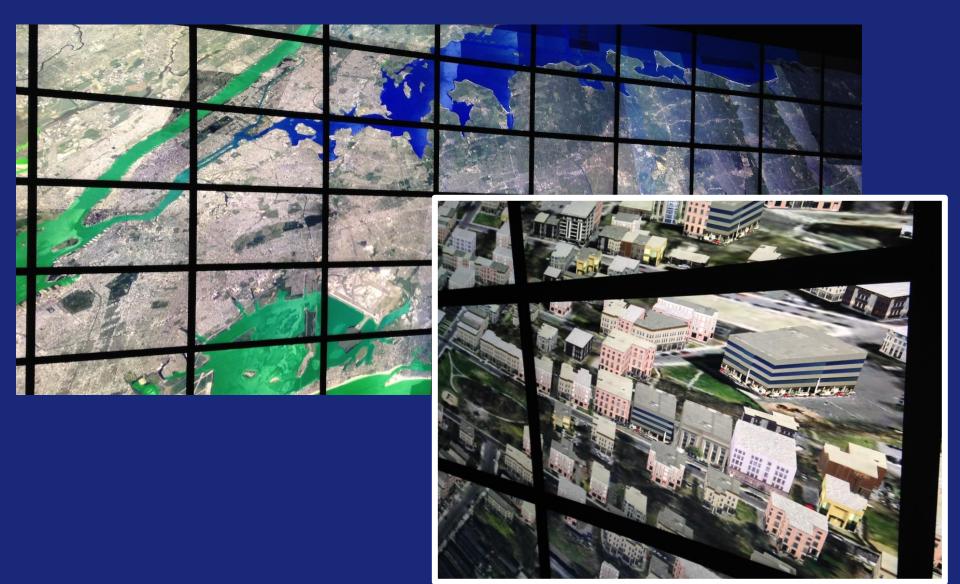
Forecast Warning Support

Dr. Jason Tuell, Director National Weather Service Eastern Region

Current Issues & Problems for Hazardous Weather Communication

Challenge on NWS side:

- forecast information is long and technical
- great products but hidden communication of this great data is often lost
- Media:
 - Too much information when the forecast varies across the NWS forecast area


Emergency managers:

- Need more lead time. What is the time to make the transition from a minor situation to an upgraded hazardous situation?
- Flash flood warnings are frequently issued, but most people don't experience anything, so the public and government officials become complacent when they hear flash flood warnings
- > NWS uses too many terms that confuse the public
- People may listen to you, but do not actually understand your message

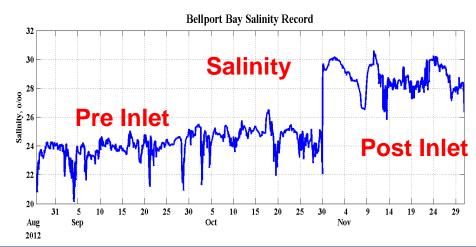
The Bottom Line:

Longer lead time, more localized forecasts, more intuitive message - graphically

Communication: visualization of probabilistic impact simulations using forecast products

2. Cascading Dynamics of Water and Infrastructure **Transportation Electric power system** Wastewater infrastructures **Freshwater distribution System Coastal ecosystem and fisheries**

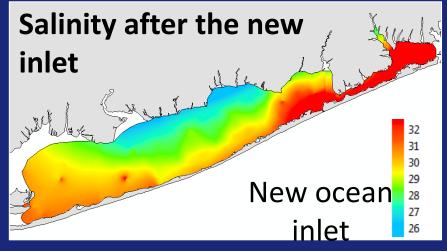
Responding to New inlet in Great South Bay


Close the new inlet or not?

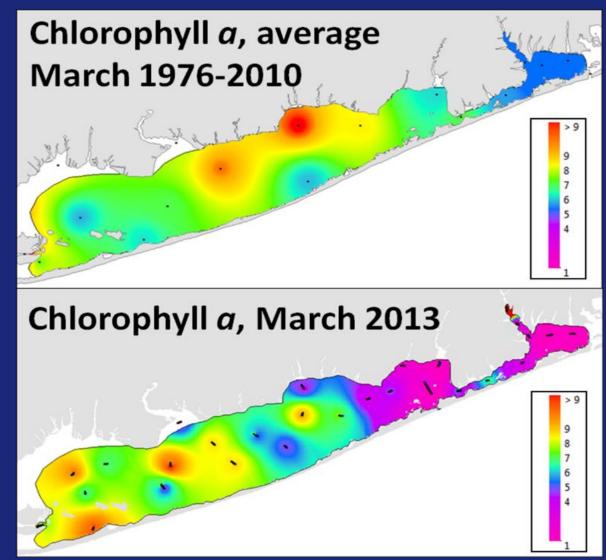
Buoy, SoMAS Stony Brook

Significant Increase of Salinity, but Little Change of Water Levels

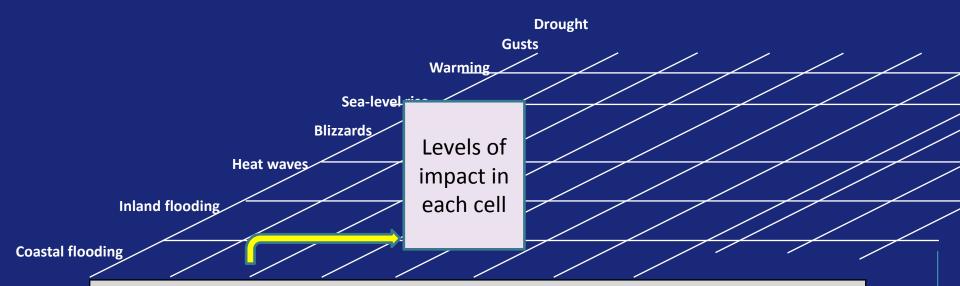
(Charles Flagg, Tom Wilson)



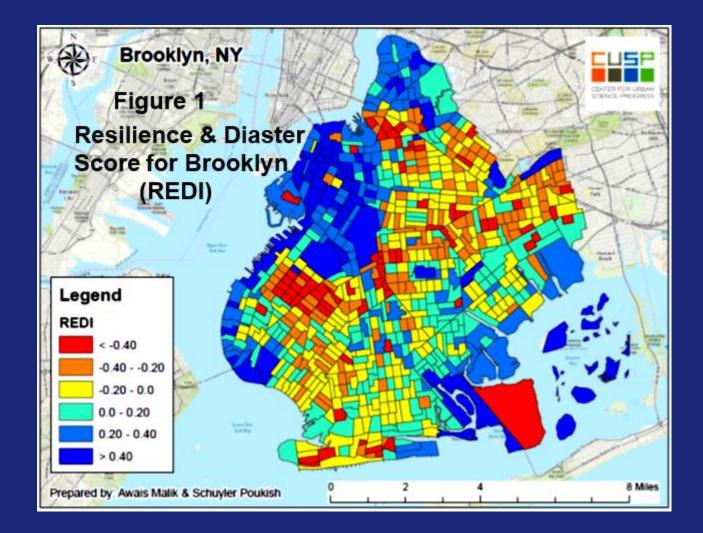
New inlet in Great South Bay



Changes in algae levels in the Great South Bay (GSB)


3. Vulnerability and Resilience Assessment
Critical facilities
Communities
Economic vulnerabilities
Resilience metrics

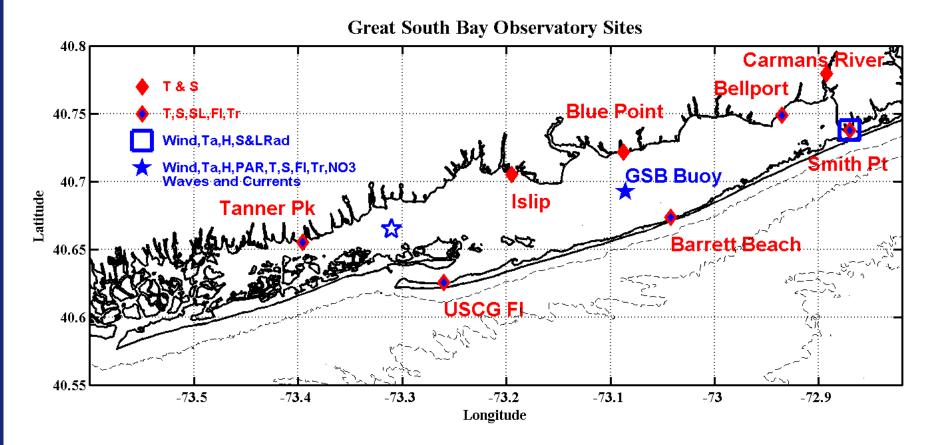
$P(risk) = \sum_{Hazard} P(Hazard) X P(Impact|Hazard)$


Risk = (Public Safety, Public Health, Economic, Social, Environment)

Consequence level given a climate or weather event in the previous table: using transportation as an example							
IMPACT SCORE /RISK TYPE	Insignificant 1	Minor 2	Moderate 3	Significant 4	Major 5		
A. Public Health	 Limited access of emergency medical vehicles 	• Limited access of health care personnel	 Inaccessible by emergency vehicles or personnel to isolated population 	 Inaccessible by emergency personnel to large population 	 Inaccessible by medical emergency personnel to large vulnerable population 		
B. Public Safety	 Limited access of police vehicles that require special efforts Increased accidents possible 	 Limited access by police vehicles and fire trucks for up to a week. Increased accidents likely 	 Inaccessible by police vehicles and fire trucks Limited access for up to a month. Increased accidents very likely 	 Inaccessible by police vehicles and fire trucks for up to a week Limited access for more than 1 month Increased accidents certain 	 Inaccessible by police vehicles and fire trucks longer than a week Inaccessible for large population Large number of increased accidents certain 		
C. Economic Activities	 limited interruption in normal economic activities short term closure with less than direct economic loss of \$200K 	 Direct economic loss of between \$200K to \$1M 	 Direct economic loss of between \$1M to \$5M 	• Direct economic loss of between \$5M to \$10M	 Direct economic loss of over \$10M Permanent loss of business 		
D. Social Activities	 limited interruption short term closure multiple closures but manageable 	 multiple closures under more than usual stress minor displacement of affected population of less than 50 	 Multiple closures for more than 1 week up to 1 month Major closure leading to severe pressure displacement of affected population between 50 to 500 	 Major closure of more than 1 month displacement of affected population between 500 to 5000 	 permanent loss of major facility displacement of affected population of more than 5000 		
E. Environmental Impact	 limited pollution or spill limited impact on habitat 	 minor pollution or spill lasting up to a week habitat impacts 	 minor pollution or spill lasting up for more than 1 week up to 1 month moderate pollution or spill lasting up to one week. 	 moderate pollution or spill lasting up for more than 1 week up to 1 month major pollution or spill lasting up to one week 	 Major pollution or spill lasting for more than a week. Permanent loss of habitats and onvironmental 		

Risk prioritization of Facilities and its communication

Stakeholder Risks from Climate Change and Extreme Weather									
CCV/ Stakeholder/ Risk type	Transport- ation	Energy	Communic ations	Ecosystems	Drinking water	Waste- water	Health systems	Governance Community	Buildings/ Infrastruc- ture
Economic									
Social									
Environ- ment									
Health									
Safety									


(Constantine Kontokosta)

4. Storm risks under climate change

Sea level rise and coastal flooding Integration of measurement systems

Monitoring: SoMAS Great South Bay Observatory

Funded by New York Department of State

Summary

- 1. NYS RISE was established to identify gaps of resiliency to extreme weather events and to make improvements
- 2. Much needs to be done on communications: visual products, knowing readiness plan and practices
- 3. Timely measurements are essential for actions during and after the events
- 4. A preliminary framework is proposed to assess weather-climate risks and their prioritization
- 5. We are eager to learn more from others