Tropical Cyclone Diurnal Cycle as Observed by TRMM

1. Introduction

Kenneth D. Leppert II and ${ }^{2}$ Daniel J. Ceci
 ${ }^{2}$ NASA Marshall Space Flight Center, Huntsville, AL 35805 -The National Hurricane Center's best track dataset was used to extract all PR and
tropical cyclone center that occurred in the Atlantic basin between 1998 and 2011 .
-300 km from land (Dated according to radius ($100-\mathrm{km}$ bins from $0-1000 \mathrm{~km}$) and local standard time (LST; 3-hr bins)
$>300 \mathrm{~km}$ from land (Dunion et al. 2014) and had a
 Toracinta et al. 2002) $\leq 270 \mathrm{~K}$ and $\leq 260 \mathrm{~K}$, respectively, as a function of radius and time.
-Composites were created for all storms, as a function of storm intensity, and for storms with $850-200 \mathrm{hPa}$ wind shear $\leq 15 \mathrm{kts}$.

- Several case studies were also examined using passive microwave (TMI, Special Sensor Microwave Imager, and Special Sensor Microwave Imager/Sounder data) and IR (NASA global-merged IR brightness temperature dataset) data
pattern of cold cloud tops around ropical cyclones (e.g., Browner et al. 1977; Muramatsu 1983; Lajoie and Butterworth 1984; Steranka et al. 1984; Dunion et l. 2014)
-Specifically, an increase in the coverage by cold cloud tops often occurs in the inner core of the storm around the time of sunset and
 changes
 Imager (TMI) and Precipitation Radar (PR), respectively, to better understand the tropical cyclone diurnal cycle throughout a larger depth of the Imager (TMI) and Precipitation Radar (PR), respectively, to better understand the tropical cyclone diurnal cycle througho
storm's clouds than can be examined using IR satellite measurements alone which are primarily sensitive to cloud top.

5. TMI Composites

7. References

6. Conclusions

 Some radii of the 370 a single broad peak interrupted by noise)[^0]
[^0]: -Browner, S. P., W. L. Woodley, and C. G. Grifith, 1977: Diurnal oscillation of the area of cloudiness associated with tropical
 storms. Mon. Wea. Rev., 105, $856-864$. -Dunion, J. P., C. D. Th.
 Rev, 142. 3900-3919.
 -Lajoie, F. A., and I. J. Butterworth, 1984: Oscillation of high-level cirrus and heavy precipitation around Australian region tropical cyclones. Mon. Wea. Rev., 112, 535-544. Meteor. Soc. Japan, 61, 77-90.
 -Steranka, J., E. B. Rodgers, and R. C. Gentry, 1984: The diurnal variation of Atlantic Ocean tropical cyclone
 distribution inf - distribution inferred from geostationary satellite infrared measurements. Mon. Wea. Rev., 112, 2338-2344 - Toracinta, E. R., D. J. Cecil, E. J. Zipser, and S. W. Nesbitt, 2002:
 precipitatating systems in the tropics. Mon. Wea. Rev., 130, 802-824.

