

DWD

Testing the Performance of Radar and Lidar Vertical Wind Shear Detection at Frankfurt and Munich Airports

Thomas Ernsdorf, Björn-Rüdiger Beckmann (Deutscher Wetterdienst / German Weather Service)

Lidar (left) and radar (right), Munich airport

95th American Meteorological Society Annual Meeting 17th Conference on Aviation, Range, and Aerospace Meteorology Session 5 (Turbulence and Wind Shear – Part I) 4-8 January 2015 Phoenix (AZ, USA)

Wind shear present a great danger during aircraft landing and take-off

- Low-level Wind shear Alert System (LLWAS) based on X-band Doppler polarimetric radar and 1.6 µm Doppler lidar
 - > Detection, quantification and alert on the presence of low-level wind shear
 - Independent on most weather situations
 - Automatic generation of warnings concerning ICAO every minute
 - Optimizing of aircraft staggering

Main purpose: Increase of air traffic safety.

2 System overview

Characteristics

Parameter	Radar (SELEX Meteor 50DX)	Lidar (Lockheed Martin WTX WindTracer)	
Wavelength	3.2 cm (X-band)	1.6 µm	
Measurement indicator	Hydrometeors	Aerosols	
Polarisation	Dual	Linear	
PRF	2000:1600 Hz	750 Hz	
Scan speed	18 deg/sec (3D scan up to 36 deg/sec)	14 deg/sec	
Scan range	75 km	12-15 km	
Radial resolution	0.15 km	0.10-0.12 km	
Azimuthal resolution	1 deg	≈2.5 deg	
Scan per minute	PPI @ 3 deg	PPI @ 3 deg	
Scan once per 5 minutes	3D scan (11 PPIs 1.0-60.0 deg) PPI scan @ 150 km range @ 0.5 deg	3D scan (5 PPIs 1.5-20.0 deg) 1-2 RHI scans	

Configuration in order to detect horizontal and vertical wind shear.

DWD

1) Filtering:

- Radar: ECLASS using DFT clutter filter, multi-trip-echo filter, interference filter
- Lidar: Modified wind standard deviation and SNR

2) Vertical wind profile processing

Volume Velocity Processing (VVP): Multivariate regression which fits a simple wind model to the observed radial velocities (Waldteufel & Corbin, 1979):

 $U(x, y, z) = u_0 + x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + (z - z_0) \frac{\partial u}{\partial z}$ $V(x, y, z) = u_0 + x \frac{\partial v}{\partial x} + y \frac{\partial v}{\partial y} + (z - z_0) \frac{\partial v}{\partial z}$ $V_r = (w_0 + W_{final}) \sin \theta + u_0 \cos \theta \sin \Phi + v_0 \cos \theta \cos \Phi$

U, *V*, *W*: local wind components, u_0, v_0 : wind components at the radar/lidar center, du/dx: partial derivates of the wind field at the center, z_0 : height of interest, Φ : azimuth angle, θ : elevation angle

- > Wind information $\Delta z = 100$ ft (approx. 30 m), $\Delta t = 5$ min
- > Merging: depending on the count and variance of single measurements

3) Vertical wind shear detection

- > Thresholds:
 - 5 kt/100 ft (moderate), 9 kt/100 ft (severe) until 1600 ft (ICAO)
 - adaption will be based on absolut wind speed
- Events Aug 2013 June 2014: 344 (832) moderate, 2 (6) severe for FRA (MUC)

4 Data availability

DWD

- > Up to 500 m AGL lidar data are available in about 80%-90% on average (left panel)
- > The fraction of radar retrievals increases significantly with increasing wind speed (right)

4 Data availability

- > Drizzle lead to radar and lidar wind detectivity within the whole profile (left panel)
- > As a fact of St fra clouds lidar impulse do not transmit about 950 m MSL (right)

Baseline of quality control, verification: Overlapping between radar and lidar wind measurements.

		Intensity of returned signal	
		high	small
Velocity standard	high	Lidar or Radar	Neither Lidar nor Radar
deviation	small	Lidar or Radar	Lidar and Radar

At Frankfurt and Munich airports about 5 % to 8 % of the measurements on average vertical wind data retrievals combine both sensors.

Radial velocity

- Monthly mean bias (lidar-radar) about 0 m/s, RMSD: 1.0 m/s to 1.4 m/s
- Decrease of bias at MUC Nov. 2013 (left panel): removal of speckles (after noise scan)
- Peaks at +-16, +-12 m/s: unambiguous velocities of single radar PRF (2000, 1600 Hz)

Monthly mean RMSD (left panel) and bias (right panel) increase with increasing scan range up to 2.5 m/s respectively -0.4 m/s at 12 km range

VVP wind profile 🔅

- Mean bias of wind speed & u: approx. 0, RMSD: 0.5 m/s within the whole profile
- Mean bias of wind direction & v increase with increasing height up to 4°, 0.5 m/s

ARAM 2015: 17th Conference on Aviation, Range, and Aerospace Meteorology 95th American Meteorology Society Annual Meeting

VVP wind profile

Comparison with COSMO-DE model analyses (2.8 km, 2 h)

VVP wind profile

Excursus: Comparison with processed wind of Mode-S EHS flight data (source: KNMI)

Requirements for verification:

- high data coverage
 (depending on number of flight movements)
- stationary, uniform wind field

Example (right panel):

- > 130 comparisons
- correlation coef. 0.95
- standard deviation 1.8 m/s

muc 2013-11-04 20:23-20:28

DWD

16

Example of vertical wind shear event: free inversion at MUC (17 February 2014, 16:47 UTC)

Summary

- > X-band radar and lidar together measure wind in most weather situations (exception: fog).
- In general radar and lidar low-level wind show higher coverage than conventional wind measurements (by aircrafts: AMDAR, Mode-S; radiosondes).
- Small wind differences show high quality of lidar and radar measurements.
- > Wind shear events are captured.
- > VVP wind profiles show inversion and cloud heights.

Outlook

- > Wind shear thresholds are foreseen to be adapted for the use of ATC.
- The quality controlled low-level wind data are foreseen to assimilate in high-resolution NWP models.
- LLWAS X-band radar can be used as back-up of operational radars.
- > Development of further products are possible (e.g. EDR [wake vortices, turbulences]).

References

- Ernsdorf, T., B. Stiller, B.-R. Beckmann, A. Weipert, S. Kauczok, R. Hannesen, 2014: Intercomparison of X-band radar and lidar low-level wind measurement for air traffic control (ATC). 8th European Conference on Radar in Meteorology and Hydrology, Garmisch-Partenkirchen, Germany.
- Weipert, A., S. Kauczok, R. Hannesen, T. Ernsdorf, B. Stiller, 2014: Wind shear detection using radar and lidar at Frankfurt and Munich airports. 8th European Conference on Radar in Meteorology and Hydrology, Garmisch-Partenkirchen, Germany.
- Hannesen, R., S. Kauczok, A. Weipert, 2014: Quality of clear-air radar radial velocity data: Do insects matter? 8th European Conference on Radar in Meteorology and Hydrology, Garmisch-Partenkirchen, Germany.
- Waldteufel P., H. Corbin, 1979: On the analysis of single Doppler data. Journal of Applied Meteorology Vol. 18. 532 542.

Thank you!

Contact:

Thomas Ernsdorf,

Björn-Rüdiger Beckmann

Deutscher Wetterdienst Abteilung für Flugmeteorologie

German Weather Service Aeronautical Meteorology Department

E-Mail: thomas.ernsdorf@dwd.de

Acknowledgement:

Deutscher Wetterdienst Wetter und Klima aus einer Hand

