Assimilation of Satellite Sea-surface Salinity Fields: Validating Ocean Analyses and Identifying Errors in Surface Buoyancy Fluxes

Eric Bayler
NOAA/NESDIS/STAR

Sudhir Nadiga
IMSG at NOAA/NWS/NCEP/EMC

Avichal Mehra
NOAA/NWS/NCEP/EMC

David Behringer
NOAA/NWS/NCEP/EMC
Sea-Surface Salinity (SSS) Data

• **NOAA World Ocean Atlas 2009 (WOA09)**
 – Gridded, 1° × 1° resolution
 – Monthly-mean climatology used in NOAA’s operational seasonal-interannual and near-real-time ocean models

• **Argo float monthly temperature and salinity profiles; Sep 2011 – Aug 2014**
 – Gridded, 1° × 1° resolution
 – International Pacific Research Center, Hawaii

• **Aquarius Official Release Level-3 Sea Surface Salinity Bias-Adjusted Standard Mapped Image Daily Data V3.0 (AQ); 1 Sep 2011 – 31 Aug 2014**
 – Gridded, 1° × 1° resolution, aggregate of ascending and descending node data
 – The empirical SST bias adjustment to retrieved salinity values is designed to reduce biases which are observed in the standard SSS product and which correlate with SST. The likely cause of these biases are small errors in the geophysical model that is used in the SSS retrievals.
 – NASA JPL PODAAC
Salinity Observations: Climatology and Variability

WOA 2009 Annual Mean SSS

Annual Mean SSS Difference (WOA – Aquarius)

Aquarius SSS Variability (JJA – DJF): Range of seasonal mean

Aquarius data: 1 Sep 2011 – 31 Aug 2014
SSS Observations (2°S-2°N): Climatology and Variability

WOA 2009: Annual Cycle of Monthly Means

Aquarius - WOA 2009

Aquarius - Argo

Salinity (pss)

Salinity Difference (pss)
Modeling

Model:

• **Modular Ocean Model version 4 (MOM4)**; resolution = 0.5 ° latitude/longitude
 – Computational core for NOAA’s National Weather Service’s (National Center for Environmental Prediction (NCEP)) operational seasonal-interannual Global Ocean Data Assimilation System (GODAS), the ocean component of NOAA’s operational coupled Climate Forecast System (CFS).

Forcing:

• Relaxed to daily satellite sea-surface temperature (SST) fields and the climatological monthly-mean sea-surface salinity (SSS) field.
 – 30-day relaxation for SST
• AQRS SSS were bias-corrected before assimilation such that at each grid-point the AQRS SSS 3-year mean of the simulations was equal to the corresponding WOA9 mean for that grid-point.

Cases:

a) **CTRL30** relaxed to WOA9 monthly climatological SSS with 30-day relaxation time period for SSS
 – NOAA operational configuration
b) **CTRL10** relaxed to WOA9 monthly climatological SSS with 10-day relaxation time period for SSS
 – Examines the impact of more tightly constraining SSS to climatology
c) **AQ30** relaxed to daily bias-corrected AQRS with 30-day relaxation time period for SSS;
 – Examines the impact of global Aquarius data coverage and its variability
d) **AQ10** relaxed to daily bias-corrected AQRS with 10-day relaxation time period for SSS
 – Examines the impact of more tightly constraining SSS to observations

• All runs initiated from the same ocean initial condition and run for 09/2011 – 08/2014
Model Salinity Annual RMS Variability

CTRL30

Salinity RMS Variability (pss)

AQRS30

Salinity RMS Variability (pss)

CTRL10

Salinity RMS Variability (pss)

AQRS10

Salinity RMS Variability (pss)
Annual-mean Upper-ocean (0-300m) Impact (5°S - 5°N): Temperature

&AQ30 – CTRL30

CTRL10 – CTRL30

&AQ10 – AQ30

&AQ30 – CTRL10

&AQ10 – CTRL30

&AQ10 – CTRL10

Temperature Difference (°C)

Indian Pacific Atlantic

Indian Pacific Atlantic
Annual-mean Upper-ocean (0-300m) Impact (5°S - 5°N): Salinity

AQ30 – CTRL30

CTRL10 – CTRL30

AQ10 – AQ30

AQ30 – CTRL10

AQ10 – CTRL30

Salinity Difference (pss)

-0.2 -0.15 -0.1 -0.05 -0.005 0.005 0.05 0.1 0.15 0.2
Temporal Impact: Equatorial Salinity (2°S – 2°N)
Pacific Ocean Impact
Temporal Salinity Differences

Niño 4

AQ30 – CTRL30

AQ10 – AQ30

AQ10 – CTRL30

Niño 3

AQ30 – CTRL30

AQ10 – AQ30

AQ10 – CTRL30

Salinity Difference (pss)
Temporal Temperature Differences

Niño 4

AQ30 – CTRL30

AQ10 – AQ30

AQ10 – CTRL30

Niño 3

AQ30 – CTRL30

AQ10 – AQ30

AQ10 – CTRL30

Temperature Difference (°C)
Definition

- Root Mean Square Error (RMSE) Percent Change:

\[
100 \times \left[\frac{\text{RMSE}(\text{Case1}_{\text{obs_reference}}) - \text{RMSE}(\text{Case2}_{\text{obs_reference}})}{\text{RMSE}(\text{CTRL30}_{\text{obs_reference}})} \right]
\]

Percent changes referenced to NOAA’s operational configuration (CTRL30)
Model Salinity Error

Reference = ARGO

CTRL30

CTRL10

AQ30

AQ10

Reference = Aquarius

Salinity RMS Error (psu)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Modeled Salinity: Percent RMS Error Change

Reference = ARGO

Case Difference

- AQ30 - CTRL30
- AQ10 – AQ30
- AQ10 – CTRL30
- CTRL10 – CTRL30
- AQ10 – CTRL10

Reference = Aquarius

Percent RMS Error Change (%)
Upper-ocean (0-300m) Heat Content: Percent RMS Error Change

Reference = Argo

Case Difference

AQ30 - CTRL30

AQ10 – AQ30

AQ10 – CTRL30

CTRL10 – CTRL30

AQ10 – CTRL10
Conclusions

• Satellite SSS data introduces mean differences and variability with respect to the current sparsely populated climatology used operationally

• Upper-ocean (0-300m) equatorial (5°S – 5°N) impacts:
 – Temperature
 • Employing satellite SSS tends to create general heating throughout
 • More tightly constraining the model to reflect near-real-time salinity tends to intensify heating while creating significant cooling in the central Pacific
 – Salinity
 • Employing satellite SSS generally freshens the Atlantic and Indian Oceans while increasing the salinity in the Pacific
 • More tightly constraining the model to reflect near-real-time salinity values increases the salinity in the eastern Indian, western and eastern Pacific and western Atlantic, while freshening the western Indian, central Pacific, and eastern Atlantic Oceans

• Net effect within the Pacific: Niño-3 is generally warmer and saltier while Niño-4 is generally cooler and fresher

• Using satellite SSS data improves the model’s representativeness for salinity; however, with respect to upper-ocean heat content, the results are less conclusive.