

On the usage of satellite derived products in ADWICE for diagnosing in-flight aircraft icing over Europe

17th Aviation, Range and Aerospace Meteorology Conference, January 4-8, 2015, Phoenix, AZ

Frank Kalinka¹, J. Tendel², K. Roloff² and T. Hauf²

¹ Deutscher Wetterdienst, Research & Development division, Offenbach, Germany ²Leibniz University of Hannover, Institute of Meteorology and Climatology, Germany

Why do we need a Post-processing like ADWICE?

- ➔ Risk/Intensity of icing is proportional to
 - → Amount & size of supercooled large droplets (SLD)
- But no direct (or insufficient) information of SLD from NWP (here: COSMO-EU)!
- ➔ Therefore, other techniques must be used:

→e.g. ADWICE

Diagnostic Icing Algorithm (ADWICE DIA)

Roloff et. al., in preparation: The German In-flight Icing Warning System ADWICE for European Airspace – Current Structure, Recent Improvements and Verification Results

Satellite Products (www.nwcsaf.org):

Satellite Products (www.nwcsaf.org):

Satellite Products (www.nwcsaf.org):

Combination of Cloud-Top-Temperature, Cloud Phase & Cloud Mask:

- CTT = -20°C < T < 0°C
- Cloud Phase = Liquid general icing risk from cloud top to -1000m
- Cloud Mask = True

Example: cross-section

Example: Icing Intensity (Prognosis)

Example: Icing Intensity (Diagnosis with Sat-Data)

Verification: Model vs. PIREPs

Verification with PIREPS

- PIREPS are inaccurate in time and location (horizontal and vertical)
- Icing degree (LGT, MOD, SEV) is subjective and depends on type of aircraft
- Therefore: Maximum of forecasted / diagnosed icing intensity in a model-cube was compared to the related PIREP/AIREP:

" A320 REP MOD ICE BTN FL100 AND FL190 BTN VENEZIA AND VIC REP AT 11.00"

Verification Results for Europe

	\frown			
		1-False-		Area under
	Hit-Rate	Alarm-Rate	Vol%	curve
			/ \	
PIP	86,65	66,67	11,15	0,7666
DIP (without Sat-data)	83,43	71,43	10,18	0,7743
			\ /	
DIP (with Sat-data)	83,23	71,43	8,77	0,7733
			\bigvee	

- Vol % = number of GP with diagnosed icing / number of all model GP

- Verification study over USA shows similar results (Tendel, 2013)

Conclusion

The implementation of satellite derived products into the ADWICE-Diagnosis leads to a reduction of grid-points diagnosed with icing by >16%, while Hit-Rate do not degrade!

➔ Global setup of ADWICE-Prognosis ICON-Model:

Outlook