A framework for Aerosol - Cloud Interactions Monitoring in liquid water clouds Karolina Sarna, Herman Russchenberg

TU Delft Climate Institute

Aerosol-Cloud Interactions Studies

Table 1. References used in Fig 1b. All studies address low or liquid clouds.

	method/ instrument	parameters used	ACIτ	resolution	temporal averaging	L^*
Ground						
Feingold et al. (2003)	RS (remote sensing)		0.10	20 s		yes
Garrett et al. (2004)	RS+in situ		0.15	30 min		yes
Kim et al. (2008)	RS+in situ		0.15	5 min		yes
Lihavainen et al. (2008)	in situ		0.24	1 h		yes
McComiskey et al. (2009)	RS+in situ		0.16	20 s		yes
Airborne						
Twohy et al. (2005)	in situ		0.27	10–60 min		
Raga and Jonas (1993)	in situ		0.09	NA		no
Martin et al. (1994)	in situ		0.25	30 km		
Gultepe et al. (1996)	in situ		0.22	\sim 12 km		yes
O'Dowd et al. (1999)	in situ		0.20			
McFarquhar and Heymsfield (2001)	in situ		0.11			
Ramanathan (2001)	in situ		0.21-0.33			
Lu et al. (2007)	in situ		0.19	30 km		
Lu et al. (2008)	in situ		0.14	leg means		
Satellite						
Nakajima et al. (2001)	AVHRR	$N_{\rm d}; N_{\rm a}$	0.17	0.5°	4 months	
Bulgin et al. (2008)	ASTER-2	$r_{\rm e}; \tau_{\rm a}$	0.10-0.16 (0.13)	1°	seasonal/3 months	no
Kaufman et al. (2005)	MODIS	r _e ; AI	0.046-0.174 (0.0975)	1°	simultaneous/daily	no
Sekiguchi et al. (2003)	AVHRR	$r_{\rm e}; N_{\rm a}$	0.1	2.5°	daily	no
Lebsock et al. (2008)	MODIS	r _e ; AI	0.07	1 km to 1°	simultaneous	no
Sekiguchi et al. (2003)	POLDER	re; Na	0.07 (ocean)	2.5°	monthly	no
Quaas et al. (2006)	MODIS	$N_{\rm d}; \tau_{\rm a}$	0.04	$3.75^{\circ} \times 2.5^{\circ}$	daily	
Quaas et al. (2004)	POLDER	r _e ; AI	0.04 (ocean)/0.012(land)	$3.75^{\circ} \times 2.5^{\circ}$	simultaneous	no
Satellite + Model						
Breon et al. (2002)	POLDER + back trajectories	<i>r</i> _e ; <i>τ</i> _a , AI	0.085 (ocean)/0.04 (land)	150 km	3 months	no
Chameides et al. (2002)	ISCCP + CTM	$\tau_{\rm c}; \tau_{\rm a}$	0.17 (all)/0.14 (low cloud)	280 km	annual	no

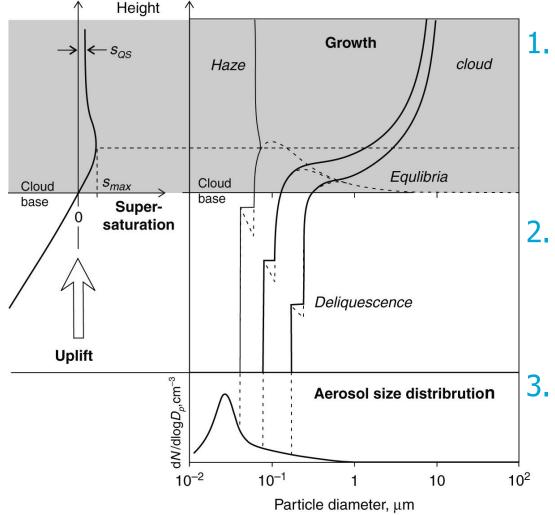
* L-constraint used in calculation of ACI.

Source : McComiskey, A., and G. Feingold. "The Scale Problem in Quantifying Aerosol Indirect Effects." Atmos. Chem. Phys. 12, no. 2 (January 23, 2012)

TU Delft Climate Institute

ACTRIS January 5th, 2015

How to monitor ACI?

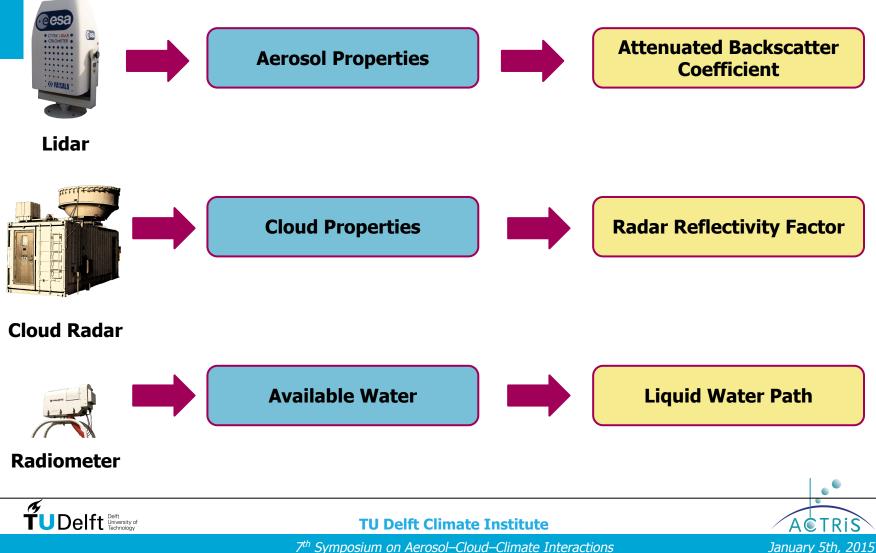

- Aerosol Cloud Interactions represent first indirect effect which in fact represents the activation process
- This process takes place below the cloud base and should be observed from the ground
- It is a microphysical process and thus should be observed on a **local scale**
- For a large coverage one should use widely available instruments
- Use direct observables to bypass assumptions of the microphysical properties retrieval algorithms

TU Delft Climate Institute

Evolution of a liquid water cloud

Aerosol become cloud droplets when they **grow through the peak of the Köhler** function

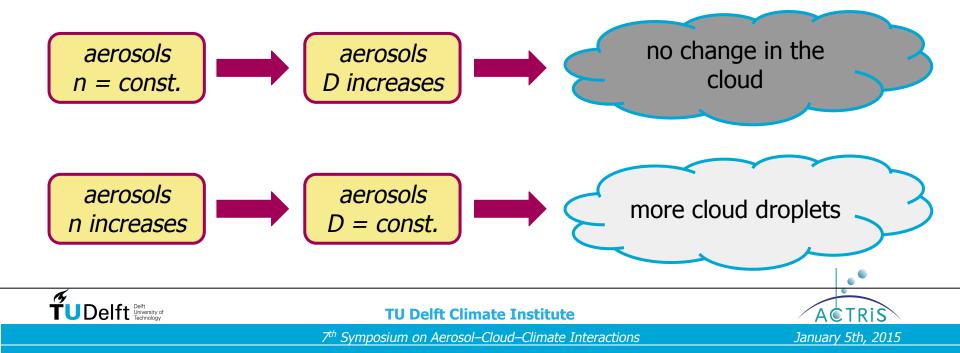
- 2. Aerosol diameter does not matter much for the resulting cloud droplet size
 - More aerosol result in more cloud droplets



Source: Lamb D., Verliende J. "Physics and Chemistry of Clouds"

TU Delft Climate Institute

How to monitor ACI?

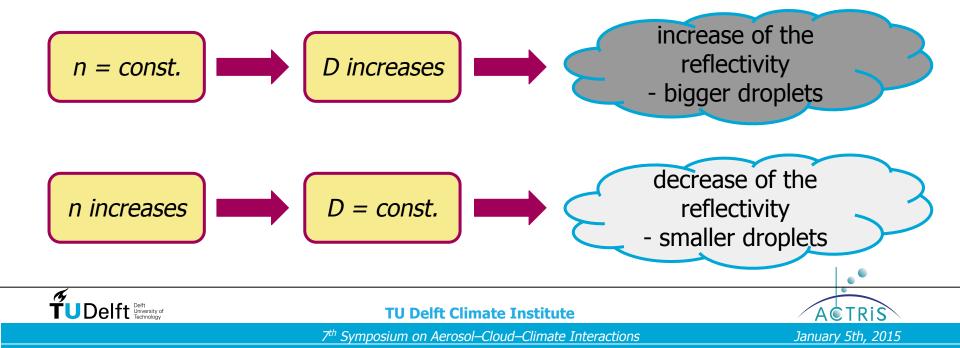


Attenuated Backscatter Coefficient

$$\beta \approx n_{aerosol} * D_{aerosol}^2$$

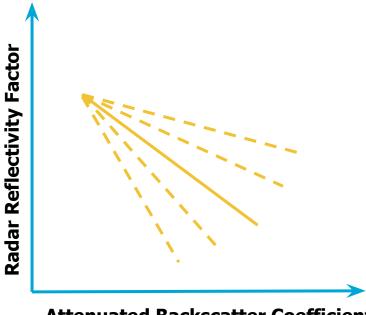
same amount of liquid water is available

if the Attenuated Backscatter Coefficient is increasing



Attenuated Backscatter Coefficient

$$Z \approx n_{cloud} * D_{cloud}^6$$

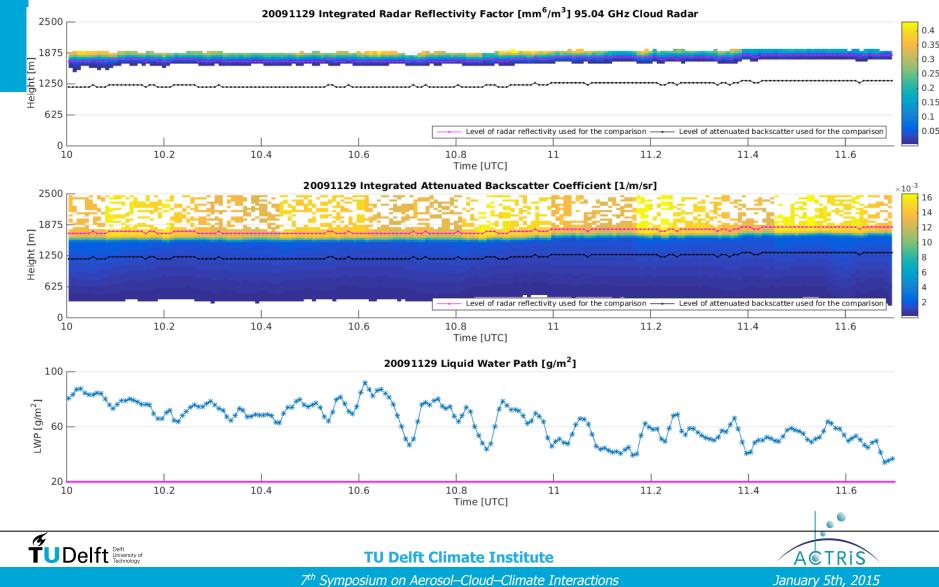

same amount of liquid water is available

if the Radar Reflectivity Factor is increasing

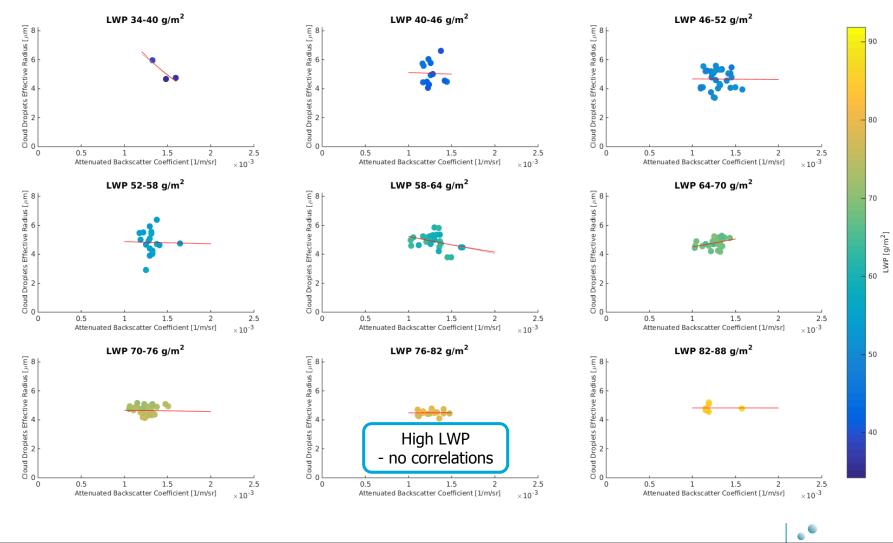
How to monitor ACI?

 $n_{cloud} \propto n_{aerosols}^{\gamma}$

Attenuated Backscatter Coefficient

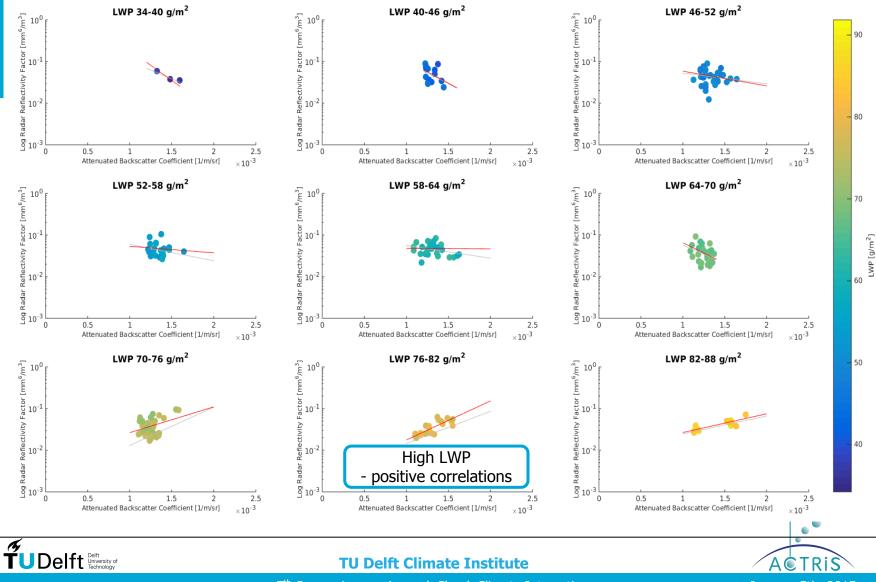

- We expect that an **increase** of the Attenuated Backscatter **Coefficient** will correspond to a **decrease** of the **Radar Reflectivity Factor**
- However, the **slope** of this correlation will vary

TU Delft Climate Institute


Study case 2009-11-29

Microphysical retrieval

Attenuated Backscatter vs Effective Radius


TU Delft Climate Institute

7th Symposium on Aerosol–Cloud–Climate Interactions

January 5th, 2015

A©TRiS

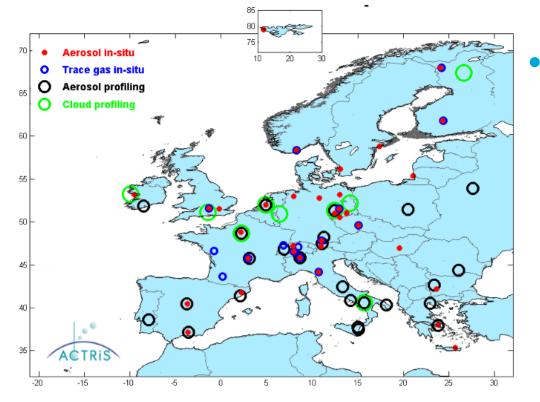
Attenuated Backscatter vs Radar Reflectivity

7th Symposium on Aerosol–Cloud–Climate Interactions

January 5th, 2015

Benefits and limits of the method

- 1. Use of **direct observables**
- 2. Use of widely spread remote sensing instruments
- 3. No assumptions about the microphysical properties of clouds
- 4. It is **less restrictive** in the selection of study cases which will allow to analyse more data
- 5. It is **sensitive to the level in and below the cloud** where the measurements are compared
- 6. It is necessary to **consider other processes** that may influence the change in observables



TU Delft Climate Institute

Application

 This framework will be implemented at the cloud profiling sites of the ACTRIS network in Europe to enable monitoring of the Aerosol-Cloud Interaction close to real-time.

It is based on the CloudNet data standard and can easily become one of the products

TU Delft Climate Institute