
Python-based scientific analysis and
visualization of precipitation systems at
NASA Marshall Space Flight Center

Timothy J. Lang

Acknowledgments: Jason Burks, Scott Collis, Brody Fuchs, Nick Guy,
 Paul Hein, Jonathan Helmus, Brent Roberts

Talk Overview

1. Motivation

2. Three Python Modules
•  Python Advanced Microwave Precipitation Radiometer

Data Toolkit (PyAMPR)
•  Marshall MRMS Mosaic Python Toolkit (MMM-Py)
•  Python Turbulence Detection Algorithm (PyTDA)

3. Current and Future Paths

4. Summary

Python Advanced Microwave Precipitation Radiometer Data Toolkit
(PyAMPR)

Motivation
•  AMPR is a polarimetric, multi-frequency, cross-track scanning airborne

passive microwave radiometer managed by NASA MSFC
•  Nearly 25-year scientific legacy, flown in ~15 airborne missions
•  In operation today – MC3E (2011), IPHEx (2014), OLYMPEX (2015)

Dataset available here: http://ghrc.msfc.nasa.gov

Problems
•  Obscure, user-unfriendly ASCII format with hundreds of columns
•  Dataset format has changed over years, from project to project
•  Polarimetric upgrade (2010) added new channels to dataset
•  Legacy data ingest and visualization software uses outdated or commercially

licensed languages

Goal – Modernize AMPR data management and visualization

PyAMPR Software Structure

Python 2.x – NumPy, matplotlib, Basemap, time, datetime, calendar, gzip, codecs
Other dependencies – simplekml, auxiliary code for custom colormap and
Google Earth output (from http://ocefpaf.github.io/python4oceanographers/blog/2014/03/10/gearth/)

Class AmprTb
Attributes:
TBs from all channels (10, 19, 37, 85 GHz – Both A & B), Nav & GeoLocation
info, Terrain info (elevation & land fraction) – All for a single flight

Methods:
__init__, read_ampr_tb_level1b, help, plot_ampr_track, plot_ampr_channels,
calc_polarization, write_ampr_kmz

Common data model regardless of flight/project
(missing variables get bad data values)

Getting Started
iphex_data = pyampr.AmprTb(‘iphex_data_file.txt’, project=‘IPHEX’)

pyampr.AmprTb.plot_ampr_track()

pyplot.pcolormesh + Basemap
backbone

Options
•  Lat/Lon range adjustment
•  Time/Scan range adjustment
•  Aircraft Track flag
•  Gridline adjustments
•  Image file save
•  Custom/default figure titles
•  Custom color tables, levels
•  Manage poor geolocations
•  Aircraft maneuver suppression
•  Figure, axis object return

pyampr.AmprTb.plot_ampr_channels()

pcolormesh + plot
backbone

Similar options to
plot_ampr_track(),
minus geolocation
stuff

Support for
polarization
deconvolution via
calc_polarization
method

pyampr.AmprTb.write_ampr_kmz()

Every TCSP Flight

•  AMPR was the only scanning instrument on ER-2 to provide real-time imagery
during IPHEx campaign

•  Real-time data transmission enabled continual production of KMZs (powered
by PyAMPR), which were ingested into NASA Mission Tools Suite

Real-Time Field Campaign Support

Dataset Integration

Example
AMPR + NEXRAD

Key feature of PyAMPR
Strong canned imagery
creation, but figure/axis return
enables endless
customization

Marshall MRMS Mosaic Python Toolkit (MMM-Py)

Motivation
•  NOAA MRMS mosaics provide 3D NEXRAD radar reflectivity on a 2-minute,

0.01° national grid (formerly 5-minute)
•  Mosaics a godsend for multiple applications and research projects, including

my own interests (large MCSs that produce sprites)

Problems
•  Data distributed as regional tiles in custom binary format
•  Major change to tile format in 2013 (including NMQ to MRMS name change)
•  No well-known, widely distributed software for detailed analyses

Goal – Read into a common data model, display any MRMS file (binary or
netCDF), and be able to merge regional tiles as needed

MMM-Py Software Structure

Python 2.x – NumPy, matplotlib, Basemap, scipy, time, calendar, gzip, os, struct

Class MosaicTile
Attributes:
reflectivity (mrefl3d, mrefl3d_comp), grid info, Time, Duration, Version, Filename,
Variables (support for future dual-pol)

Methods:
__init__, read_mosaic_binary, read_mosaic_netcdf, get_comp, diag, help,
plot_horiz, plot_vert, three_panel_plot, write_mosaic_binary, subsection,
output_composite

Class MosaicStitch
Child class of MosaicTile, read methods disabled, added stitch_ns() & stitch_we()

Function stitch_mosaic_tiles
Arguments: Array of MosaicTiles/Stitches, direction of stitching (if 1D array)
Output: MosaicStitch

Getting Started
mosaic_tile = mmmpy.MosaicTile(‘mosaic_tile.bin.gz’)

mmmpy.stitch_mosaic_tiles() in action – Going from multiple MosaicTiles …

new_stitch = mmmpy.stitch_mosaic_tiles(map_array=[[tile1, tile2, tile3, tile4], [tile5, tile6, tile7, tile8]])

… to a MosaicStitch numpy.append() is backbone
Iterative calls to mmmpy.MosaicStitch.stitch_ns/we()

Plotting Features
•  mmmpy.MosaicTile.plot_horiz()
•  mmmpy.MosaicTile.plot_vert()
•  pyplot.contourf() backbone
•  Composites or CAPPIs
•  Custom lat/lon/vertical range
•  Custom gridlines & Basemap res.
•  Custom color map, levels, titles

mmmpy.MosaicTile.three_panel_plot()
Example: Hurricane Arthur

•  Customization available for all three subplots,
including figure/axis return

•  Once again – Canned yet flexible figure creation

Python Turbulence Detection Algorithm (PyTDA)

Motivation
•  Turbulence (specifically, eddy dissipation rate or EDR) long known to be

retrievable via Doppler spectrum width analysis
•  NCAR Turbulence Detection Algorithm (NTDA, Williams et al. 2006) uses fuzzy-

logic techniques to correct for artifacts and smooth data for accurate retrievals

Problems
•  Spectrum width noisy, needs smoothing/QC before simply inverting to EDR
•  NTDA aimed at NEXRAD & US Gov. use (aviation forecasting over entire US)
•  Need turbulence retrieval for generic radars & case studies (i.e., the little guy!)

Goal – Rapid, efficient retrieval of turbulence from Doppler radar data

PyTDA Software Structure

Python 2.x – numpy, scipy, sklearn, time, Py-ART

Function calc_turb_sweep()
Arguments: Py-ART radar object, sweep number, split-cut flag, NTDA flag, NTDA
search radius, x/y limits, radar beamwidth and gate spacing
Output: 2D turbulence sweep, plus lat/lon of each gate

Approach:
•  NTDA does weighted average of interest fields (Cpr, Czh, Csnr, Cswv, Crng) in

user-defined disc surrounding gate (usually R = 2 km)
•  Invert spectrum width using long- & short-range equations (e.g., Labitt 1981) -

scipy.special.gamma() & scipy.special.hyp2f1()
•  One-dimensionalize and reduce data using ravel() and masks, respectively
•  sklearn.neighbors.BallTree for nearest neighbor search (NTDA search radius

& spectrum width variance)
•  numpy function broadcasting whenever possible, Cython when not

Function calc_turb_vol()
Arguments: Similar to above, iteratively calls calc_turb_sweep() over volume
Output: Py-ART radar object with masked turbulence field (EDR1/3) added

PyTDA Example

My goal with all of these modules has been
to turn complex tasks into one line of code

Retrieval of turbulence
(EDR1/3) using Python
variant of NCAR
Turbulence Detection
Algorithm (PyTDA)
	
Software interfaces
seamlessly with Py-
ART radar objects but
is its own standalone
package

Turbulence field can be
viewed using Py-ART
RadarDisplay object, or
saved to radar file,
viewed in NCAR solo,
gridded, etc.

NB: No correction for
wind shear yet

Turbulence	

Doppler	 Velocity	

Reflec3vity	

Spectrum	 Width	

Current/Future Work
Python Implementation of
Single-Doppler Retrieval of
2D Winds via 2DVAR
(Xu et al. 2006)
•  Similar approach to

PyTDA (Standalone
module w/ Py-ART
backbone)

•  Statistical interpolation
using radial velocity to
correct a background field

•  (Background can be
assumed 0, or estimated
via sounding/VAD/
scatterometer)

•  Extension of VAD
•  Capable of retrieving

mesoscale fronts/
boundaries

•  Solve matrix equations
using scipy.linalg module

Summary
1.  PyAMPR – Read, analyze, visualize AMPR data
2.  MMM-Py – Read, analyze, visualize MRMS 3D radar mosaics
3.  PyTDA – Retrieve turbulence from Doppler radar data

All to be hosted at:
https://github.com/tjlang (Have patience with NASA!)

Other MSFC Precip Python Work At 95th AMS
•  Poster 427, “A high-resolution merged wind dataset for

DYNAMO: Progress and future plans” – Py-ART used to correct
and visualize Doppler radar data (Hall 4, Monday-Tuesday, 5-6
Jan, 3MJOSYMP)

•  Talk 6.5, “Investigation of the electrification of pyrocumulus
clouds” – Py-ART & MMM-Py used to analyze pyroCb
electrification (Rm 225AB, 2:30p Tuesday 6 Jan, 7LIGHTNING)

