Investigation of the Electrification of Pyrocumulus Clouds

Additional Acknowledgements: DOE Py-ART Software Team, Wikimedia Commons

1. Background and Motivation

2.2013 Pyrocumulus Lightning Cases

3. Geostationary Lightning Mapper (GLM) Proxy Data

Background

Typical Pyrocumulus Lightning Flash

(Lang et al. 2014)

Hewlett Fire flash detected by Colorado Lightning Mapping Array (COLMA)

- Intracloud (not CG)
- High-altitude (~10 km MSL)
- Shallow (~2 km deep)
- Duration << 1 s
- Small! *L* ~ 5-7 km
- Positive charge overlaying negative ("normal" polarity)
- Numerous precursor VHF sources starting ~30 s prior to flash

- Below LCL High Z_{DR} /low ρ_{HV} indicating mostly smoke
- Above LCL increasing ρ_{HV} and decreasing Z_{DR} condensation/freezing?
- Mid-level cloud bookending plume Low Z_{DR} /high ρ_{HV} relatively clean
- Near and above -40 °C altitude ZDR -1 to +1 dB, ρ_{HV} ~0.6 or more
- Lightning occurred in this inferred ice/ash mixture

- What about non-lightning-producing plumes?
- Many examples during DC3!
- Only smoke signature evident in polarimetric data
- No growth above -40 °C

Motivation

- The lightning and microphysical structures observed in Colorado during 2012 are very unusual for thunderstorms. Are these observations seen in PyroCu elsewhere?
- The NEXRAD radar network was recently upgraded to dual-pol. Can we document the internal microphysical structures of PyroCu elsewhere?
- The 2012 PyroCu produced no NLDN-detected flashes. The NLDN was upgraded after 2012; can it now observe at least some PyroCu lightning?
- GOES-R will be launched soon and will feature the Geostationary Lightning Mapper (GLM) instrument. Can we expect GLM to provide useful information about PyroCu lightning?

1. Background and Motivation

2.2013 Pyrocumulus Lightning Cases

3. Geostationary Lightning Mapper (GLM) Proxy Data

2013 Cases 10 Total - 7 Lightning, 3 Null

NLDN IC NLDN -CG NLDN +CG • a. Reflectivity, Elevation: 0.9 deg b. Reflectivity, Elevation: 5.1 deg radar 90 80 -45 -55c. ZDR, Elevation: 0.9 deg d. ZDR, Elevation: 5.1 deg (dB) 1.6 0.8 0.8 -0.8 -1.6 -65 -60 -55 -50 -45 e. phy, Elevation: 0.9 deg f. ρhv, Elevation: 5.1 deg 0.6 5 -55 -50 -45 -50 -45 -40 -65 -60 -40

KESX 2013-07-05 00:01:47 UTC

Carpenter 1

GOES Visible and Shortwave IR 4-5 July 2013 (~2200-0200 UTC) (Source: pyrocb.ssec.wisc.edu) Las Vegas polarimetric NEXRAD $0.5^{\circ} \& 5.1^{\circ}$ sweeps 00:00-01:00 UTC, 5 July 2013 NLDN IC @ 00:23:20 UTC, $I_{pk} = +4.5$ kA NLDN IC @ 00:25:16 UTC, $I_{pk} = +7.6$ kA NLDN -CG @ 00:35:54 UTC, $I_{pk} = -8.5$ kA

East West distance from radar (km)

East West distance from radar (km)

KRIW 26-07-2013

KRIW 27-07-2013

Radar Values in Hardluck Pyrocumulus

- Z_{H} : 15 to ~40 dBZ
- Z_{DR}: 0.5 to -0.5 dB
- ρ_{HV} : 0.7-1.0 (unitless)
- Indicates ice particles
- Pyrocumulus echo-top height: ~8.0 km
- **18 NLDN lightning** flashes in 151 minutes

Similar results for other 2013 incidents – West Fork (CO), Rim (CA), Silver (NM), Yarnell Hill (AZ), Elk Complex (ID)

ZDR (dB)

Null Case

Radar Values in Black Forest (CO) Smoke Plume

- Z_H: 0 to ~30 dBZ
- Z_{DR}: 1-5 dB
- ρ_{HV} : 0.7 or less
- Indicates <u>smoke</u> <u>particles</u>
- Plume echo-top height: ~5.0 km
- No NLDN lightning

Similar results for other 2013 incidents – Royal Gorge (CO), Miner Paradise Complex (MT)

Table 1. List of radar parameter values used for determining if the radar was detection ice or smok	e
(from Lang et al. 2014)	

	Parameter	Parameter Minimum	Parameter Maximum
		Value	Value
Ice	Reflectivity (dBZ)	>= 20	< 70
	ZDR (dB)	>= -1	<= 1
	ρHV	>= 0.7	<= 1.0
Smoke	Reflectivity (dBZ)	>= 0	< 30
	ZDR (dB)	> 1	<= 5
	ρHV	>= 0	< 0.7

Simple particle identification

- Ice vs. Smoke
- Ice development leads
 occurrence of lightning

1. Background and Motivation

2.2013 Pyrocumulus Lightning Cases

3. Geostationary Lightning Mapper (GLM) Proxy Data

Geostationary Lightning Mapper Proxy Data

Motivation

- Many of these PyroCu flashes are small, low-current ICs
- Will GLM be able to provide information about them?

Method

- GLM proxy data were created using algorithms developed at MSFC (Bateman 2013)
- Algorithms based on statistical comparison of LMA and Lightning Imaging Sensor (LIS) observations of same lightning
- Proxy optical events clustered into proxy flashes
- Applied to Lang et al. (2014) LMA-mapped PyroCu lightning dataset

1. Background and Motivation

2.2013 Pyrocumulus Lightning Cases

3. Geostationary Lightning Mapper (GLM) Proxy Data

Summary and Conclusions

- Ten additional case PyroCu studies (lightning and non-lightning) examined
- The novel 2012 pyrocumulus lightning observations described in Lang et al. (2014) were not an exception!
 - Vertical growth of cloud leads to development of precipitation-sized ice signature in polarimetric radar data, distinctive from smoke signature
 - Modest to high Z_{H} , noisy but near-0 Z_{DR} , improved correlation
 - Presence of ice associated with occurrence of lightning
 - No ice signature, no lightning!
 - Higher-sensitivity NLDN detects at least some of the weak ICs
 - GLM appears capable of detecting many of these ICs
 - Pyrocumulus development and lightning associated with significant fire growth

Dual-Pol NEXRAD + Upgraded NLDN + GOES-R/GLM = Nationwide Pyrocumulus Electrification Observing Network