Climate Change Impacts on Air Transport Subsectors

Terence R. Thompson
January 2015
Air Transport and Climate - Context

Well trodden…

COMMERCIAL AIR TRANSPORT

GLOBAL CLIMATE

Road less traveled…

CLIMATE POLICY
What Are the Major Subsectors in Commercial Air Transport?

- **Airports** – Provide fixed infrastructure for passenger/cargo handling, aircraft departure/arrival operations, and serve as interfaces to road and rail surface transport.

- **Airlines** – Operate aircraft at airports and in en route airspace; determine four-dimensional trajectories (within constraints from ANSPs below) and associated operational characteristics; plan frequency and type of service between airports.

- **Air-navigation Service Providers (ANSPs)** – Provide traffic-control services that maintain safe separation of aircraft and manage access to constrained resources (e.g., arrival/departure slots at airports, airspace throughput) within the air-transport network.

- **Aircraft Industry** – Develops, constructs, and maintains airframes, engines, avionics, and other equipment associated with the aircraft.
Climate Impacts on Commercial Air Transport

- Airports
- Aircraft and engines
- Airspace
- Passenger safety and comfort
- Atmospheric effects (CO$_2$, water/ice, NOx, SOx, PM)
- Shifts in passenger travel preferences
- Future air-transport concepts
- Public perception
Physical Effects Linked to Different Aspects of Business Performance

<table>
<thead>
<tr>
<th>Climate Effect</th>
<th>Infrastructure</th>
<th>Aircraft Performance</th>
<th>Passenger and Cargo Demand</th>
<th>Flight Safety</th>
<th>Passenger Comfort</th>
<th>Environmental Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature increase</td>
<td>Heat damage to runway/taxiway surfaces</td>
<td>Decreased climb performance</td>
<td>Shifts in geographic region and season</td>
<td>-</td>
<td>-</td>
<td>Changes in noise impact</td>
</tr>
<tr>
<td>Change in precipitation</td>
<td>Loss of efficiency, increased delays</td>
<td>-</td>
<td>Shifts in geographic region and season</td>
<td>-</td>
<td>-</td>
<td>Changes in air-quality impact</td>
</tr>
<tr>
<td>Frequency and intensity of convective weather</td>
<td>Loss of efficiency, increased delays</td>
<td>-</td>
<td>-</td>
<td>Increased turbulence, etc.</td>
<td>Increased turbulence</td>
<td>-</td>
</tr>
<tr>
<td>Changes in wind patterns</td>
<td>Loss of efficiency, increased delays</td>
<td>-</td>
<td>-</td>
<td>Increased crosswinds</td>
<td>-</td>
<td>Changes in air-quality impact</td>
</tr>
<tr>
<td>Sea-level rise, increased storm surge</td>
<td>Intermittent or permanent airport closures, loss of efficiency, increased delays</td>
<td>-</td>
<td>Shifts in geographic region and season</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Level of Concern Regarding Impact Differs Across Subsectors

- Different business objectives focus concern on particular impacts:

<table>
<thead>
<tr>
<th>Sector Component</th>
<th>Infrastructure</th>
<th>Aircraft Performance</th>
<th>Passenger and Cargo Demand</th>
<th>Flight Safety</th>
<th>Passenger Comfort</th>
<th>Environmental Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airports</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Moderate</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Airlines</td>
<td>Moderate</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Moderate</td>
</tr>
<tr>
<td>ANSPs</td>
<td>High</td>
<td>Moderate</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Aircraft Industry</td>
<td>Moderate</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
</tbody>
</table>
FAA Responsibilities and Activities

• Under Executive Order 13514*, FAA is to identify vulnerabilities to climate change and to develop programs to mitigate climate impacts and adapt to climate change. Recent activities include**:

 – *Airport sustainability planning* – Providing funding for airports to develop sustainability plans;

 – *Navigation infrastructure assessment* – Compare NOAA SLOSH data with FAA assets in coastal areas; and

 – *Advanced weather-information assessment* – Complete investment decision regarding NextGen Network-Enabled Weather that is to provide unified weather information to FAA and system users.

Airport Sustainability Planning Includes Climate-related Components

• Major airports with such plans include Newark, Atlanta, and London Heathrow.

• Newark’s plan includes*:
 – *Climate-change risk assessment for capital projects* – Increased risk of flooding requires, for example, that such projects be designed for flood-avoidance and resiliency
 – *Tracking of past weather-related costs* - Analysis of such costs over the last ten years is being used to quantify future costs associated with shifts in weather associated with climate change.
 – These initiatives are aimed at developing a risk assessment and climate-change adaptation plan by the end of 2015.

Impacts on Airports Similar to Other Coastal Infrastructure

- Need: merge climate and infrastructure information on fine scale.

Some Airports Substantially Advanced in Climate Risk Analysis

- London Heathrow assessment* identified and evaluated 34 risks.

<table>
<thead>
<tr>
<th>Risk ID</th>
<th>Risk</th>
<th>Climate Variable</th>
<th>Threshold</th>
<th>Confidence (climate projections and or co-consequences)</th>
<th>Risk Grading (no adaptation)</th>
<th>Short Term (to 2020)</th>
<th>Medium / Long (2020 to 2050)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flap point of aviation fuel exceeded on hot days (potential fire hazard).</td>
<td>Temp</td>
<td>Aviation fuel flash point is 38°C. Temperature during the summer of 2003 peaked at 37.5°C.</td>
<td>H</td>
<td>A</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Increased incidence of fuel venting from aircraft in warm weather.</td>
<td>Temp</td>
<td>Aviation fuel flash point is 38°C.</td>
<td>H</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Increased fire risk due to higher temperatures combined with increased lightning and drought potential.</td>
<td>Temp</td>
<td>Requires research</td>
<td>M</td>
<td>G</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Change in distribution of pests and wildlife species and potential changes to bird migration patterns and bird strike risk.</td>
<td>Temp</td>
<td>Requires research</td>
<td>L</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Reduced lift for descending aircraft due to thinner air and reduced engine efficiency in very hot weather.</td>
<td>Temp</td>
<td>Aircraft operate in multiple temp zones, unlikely to be breached</td>
<td>H</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Torrential rain creates hazardous conditions for vehicles and planes i.e. airport and terminal road vehicles, and taxiing and landing aircraft.</td>
<td>Precip.</td>
<td>Defined in Strategic Flood Risk Assessment (SFRA)</td>
<td>H</td>
<td>G</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Seasonal changes to fog related disruption (increase in winter months, decrease for remainder of year).</td>
<td>Fog</td>
<td>Low Visibility Procedures when the Runway Visual Range (RVR) is < 600m and/or cloud ceiling is < 200 ft. Projections do not suggest any critical thresholds would be crossed.</td>
<td>M</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Increased risk of schedule disruption from stormy conditions.</td>
<td>Stoms</td>
<td>High winds and procedures at cross winds and procedures enacted at defined criteria (dependent on aircraft type).</td>
<td>L</td>
<td>G</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Increased longevity of wing tip vortex effect due to general lowering of surface wind speeds.</td>
<td>Wind</td>
<td>Wing tip vortex is particularly problematic for small planes taking off in quick succession after large aircraft.</td>
<td>L</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Change to prevailing wind direction affects runway utilization and schedules.</td>
<td>Wind speed/direction</td>
<td>All commercial aircraft are tested in a “demonstrated” maximum crosswind as part of their certification. Large aircraft are better able to handle cross winds than light aircraft. Technology is improving all the time.</td>
<td>L</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Disruption to airfield operations from lightning i.e. reduced suspension, changes to flight routing.</td>
<td>Lighting</td>
<td>All commercial aircraft are tested for resilience to lightning strike as part of their certification. Planes can withstand lightning strike in the air but during take off and landing instrument loss would be critical hence the diversion of routes and stakes.</td>
<td>L</td>
<td>G</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

Most serious:
Projected longer term changes to temperature and precipitation extremes. (Summer temperatures in 2003 approached the flashpoint of jet fuel.)

Uncertainties in prevailing wind conditions in the future (of concern because the airport’s two runways are parallel and there is no crosswind runway)

Impacts on Aircraft and Engines

- Aircraft take-off performance is degraded at high surface temperatures.
- Engine wear increases under dusty conditions.
- Data examples:
 - Magnitude of extreme event for fixed return period
 - Return period of extreme event of given magnitude
 - Measures of statistical significance

1950-2007 change in estimated 20-year return value

(magnitude color-coded in degC; size of circles indicates statistical significance)

Impacts on Airspace Operations

- High traffic densities regularly occur in certain airspace sectors.
- Network operation is extremely sensitive to convective weather in these areas.
- Seasonal forecasts could be used for strategic route/schedule planning.
Impacts on Passenger/Cargo Demand

- Changing travel destinations mean shifts in airline and airport market shares. Changing travel seasons mean shifts in aircraft utilization, maintenance schedules, etc.

Impacts on Passenger Safety/Comfort

• “Clear-air” turbulence may be increasing (particularly dangerous due to lack of forewarning)

North Atlantic flight-level winter clear-air turbulence in a changing climate.

The quantity shown is the median of variant 1 of Ellrod’s turbulence index, computed from 20 years of daily-mean data in December, January and February at 200 hPa.

Next Steps (All Challenging)

- Specifying what types of climate data are most relevant to the different decisions facing the several segments of this industry;

- Determining decision-appropriate time horizons and spatial resolutions for forecasts of this data;

- Performing syntheses across data sets, addressing gaps, inconsistencies, etc.

- Coupling the uncertainties inherent in these forecasts to the various decision processes.
Questions?

Terry Thompson

tthompson@lmi.org

+1-703-362-8299