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Abstract

In this communication, a reaction — diffusion model consisting of three interacting
species is discussed. Reaction-diffusion mathematical models combine in a single
framework the local chemical reactions between species in which substances are
transformed into each other and diffusion, which cause them to spread out over a
surface in space. In urban biometeorology reaction-diffusion models in bounded
regions are very important in order to analyze the impact of urban canyons on the
spatial distribution of chemical species. In this communication CO, NO,, and O,
were selected as model species. Even though, it is a very simplified model for the
chemistry of the atmosphere, as well as for the entire dynamics of the atmosphere
it focuses on the different diffusivity of species, their reactivity, and the non - linear
character of the processes. Three models are explored: Fisher’s equation, Newell-
Whitehead-Segel equation, and Zeldovich equation. The current state of the
atmosphere is introduced via external forcing to the equation with different
amplitudes and frequencies.

1. Motivations

Dispersion of pollutants is a central topic in atmospheric modeling as well as in
environmental weather hazards management. A considerable body of evidences
exists in the scientific literature regarding the impact of different chemical species
and particulate matter on human health (cardio-respiratory diseases). Approaches
based on meso-scale models as WRF-Chem and CMAQ have provided very good
insights about the spreading and the reactivity of different chemical species within
the atmosphere. However, the downscaling of these calculations to urban
environments is still pending to be solved. Computational Fluid Dynamics (CFD)
calculations are very good at these scales, and some hybrid approaches overlapping
these two limits are in use. On the other end, the solution of the linear equation of
diffusion has permitted to track the concentration of pollutants in the form of a
Gaussian function and understand the overall spatial distribution of them in flat
homogenous geometries.
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Fig 1: Areas of major incidence of asthma
™ within Miami Dade (a) and Broward (b)
“LiZ4.| Counties according to the zip code
Sy distribution obtained from billing . ‘
information provided by Emergency o ﬂ’w
Departments.
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Features of Circled Areas
* Very close to highly transited roads and/or Expressways
* High motor load, due to connecting bridges
* Low income population
* Predominant ethnicity African — American

Challenges and Pre-conditions

« Spatial distribution of asthma cases mixes different variables (physicochemical
and socio-economic) which are difficult to unify in a single model. While the
physicochemical variability happens at time intervals from hours to days, socio-
economic variables last for days, even years. This fact allows a separation of
them. The presentation focuses of the physicochemical component only.

* Information about the concentration of chemical species very sparse, few
ground — based measuring sites re operational at this moment. WRF + Chem
and CMAQ results might be used for guidance.

* Very irregular landscape geometry.

Objectives of this Presentation

* To implement a Reaction — Advection — Diffusion model for three chemical
species within the atmosphere.

 To evaluate the extent landscape’s geometry might affect the reactivity and
trapping of pollutants.

* To compare obtained solutions with the spatial distribution (zip code
distribution) of cases of asthma in Miami Dade County.

* To evaluate the feasibility of using these solutions as an operational guidance
for more WRF + Chem simulations.

3. Numerical Solutions

2. Model implementation
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Fig 2: Schematic representation of the feedback
involved in the production and transformation of
CO, NO,, and O, within the atmosphere.
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What do we know about pollution?

* Too little NO,: O; loss rather than radical
cycling leading to net O; chemical
destruction.

* Intermediate NO,: efficient O; production
via cycling of HO, and NO, radicals.

* Too much NO,: Radical termination by
alternate route (e.g. OH + NO,)

* CO stimulates NO, through kind of
“symbiosis”

* NO, and O; dynamics might be treated as
a Michaelis — Menten substrate -
inhibition model
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Reaction Kinetics Model

Due to the existence of a large amount of chemical species
continuously reacting within the atmosphere, their physical kinetics
will demand a large system of non — linear differential equations.

A coarse — grained approach might be used on the other hand by
appealing to some “effective”, “mean - field” constants of reaction
and reduce the analysis to three important chemical compounds:
CO, NO,, and O,.

In order to consider the possibility of diffusion while these reactions
take place, a reaction — diffusion model is a good starting point.

If sources are mobile, or there is an external influence of the wind,
then a reaction — advection — diffusion model is a good starting

point.

Advection — Diffusion Model
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D is the coefficient of diffusion of the chemical specie C.

V is the wind speed vector, where w, refers to the falling speed of
the chemical by gravity.

F(C) is the kinetic term responsible for the mechanism of reaction.
f(x,y,z,t) is the power of the source.

Single specie Models

* Fisher Model - F(C) — Logistic growth — Each chemical is treated
independently with its own carrying capacity.
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The solution is a propagating front, separating two non-
equilibrium homogeneous states, one of which is stable and
another one is unstable.
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* Newell-Whitehead-Segel Model — Cubic non linear diffusion

equation.
at — Di ACl ~+ V VCl —_ aCl(l — F) + fi(x,y,Z, t)
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The model has been used to simulate the Rayleigh-Benard
convection instability.

e Zeldovich Model — modeling of bistable systems. It contains
two stable states separated by an unstable state. It has
been used in modeling combustion.
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Numerical solutions were done using the software Mathematica 9.0

Wolfram Mathematica 9
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Fig. 3: Solution of the one-dimensional reaction diffusion equation
with the Fisher model. The equation was solved with zero wind
components and in a dimensionless format with:

* time scaled to the growth rate “a” t=at,

 distance scaled to diffusion length z = x (a/D)1/2

* Concentration scaled to carrying capacity ¢ = C(x,t)/K

e Dirichlet boundary conditions C(-10,t) = C(10,t) =0

Notice that the small initial fluctuation leads to an instability, that
develops in a nonlinear way: a front propagating away from the
initial perturbation. Finally the uniform stable state is established

on the whole space interval.

Fig. 4: Solution of the two-dimensional reaction diffusion equation with the Fisher model. The equation
was solved with zero wind components and with the same dimensionless scheme as before. Notice the
same front propagation observed in the one-dimensional situation.
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Fig. 5: Solution of the one-dimensional reaction diffusion equation with the Fisher model for two
interacting chemical species. The reaction function was selected as a Lotka — Volterra model with
symbiosis (mutual enhancement). The equation was solved with zero wind components and with the
same dimensionless scheme as before. Notice the same front propagation observed in the single specie
situation; however delayed because of the competition.

Conclusions

 The use of advection — diffusion — reaction models in pollution dispersal is feasible and might help to
understand the role of nonlinearities.

* The model might be solved for different geometries, including complex terrains.

 Three species models are rich in phenomena of pattern formation, including those from two species,
typically found in Turing-like modes of morphogenesis.

* The inclusion of wind patterns interacting with competing species might explain the hot spots for
respiratory diseases found on the downwind direction around the heavy loaded transportation areas.
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