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Topics discussed 

• The RTMA/URMA variables needing quality 
control. 

• Risk of multiple optima in the assimilation. 

• Generalizing Ob error distribution to a 
“Gaussian mixture” with both kurtosis and 
skewness. 

• A special choice of mixture guaranteeing 
single optimum analysis. 



The Real-Time Mesoscale Analysis, and its delayed 
version, the UnRestricted Mesoscale Analysis 
(which is able to access more late observations, 
and can therefore serve as the surface “analysis 
of record”), produce two dimensional analyses of 
surface, or near-surface variables.  
 
RTMA and URMA are specialized 2D versions of 
NCEP’s Gridpoint Statistical Interpolation (GSI). 
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Variables and Data Sources 
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In addition to the more standard meteorological 
variables: 
2m temperature, 
2m specific humidity 
10m horizontal wind components 
surface pressure 
We are also (now, or soon) analyzing variables 
quantifying: 
10m wind gust 
visibility 
total cloud amount (sky cover analysis) 
(Max and min T, ceiling, and significant wave ht 
are intended to be added in future, as discussed 
In Jacob Carley’s talk 4.3 in this session.) 
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Quality control is needed for all the observations 
entering the analysis to ensure that their rare but 
destructive gross errors do not jeopardize the final 
result. Data sources include: 

 
METAR 

Mesonet 
Ships 
Buoys 

Satwind 
GOES Imager (soon) 

METOP-B-ASCAT winds (later) 
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The dilemma we always face in dealing with the 
matter of quality control is deciding how to treat 
those observations in the analysis which seem to be 
at greater variance than expected from the 
background or evolving iterations of the analysis, 
and yet are not so greatly deviant that they can be 
rejected without qualm. 
 

The Quality Control Dilemma; 
How to resolve it. 
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An objective resolution of this dilemma is 
provided by the Bayesian statistical way of 
thinking about the analysis problem, which 
derives from the non-Gaussianity of the 
distribution of the errors in the observations 
considered. 
 
A reject/accept criterion is replaced by an 
optimal progressive down-weighting of the 
observation as Observation-minus-Analysis 
(O-A) increases. 
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Typically, we believe that once the contributions 
of representativeness  error and instrument 
quirks are all combined, effective observation 
errors have tails considerably fatter than those of 
a pure Gaussian (and peaks that are narrower). 
 
If we knew just what that tail shape was, the 
Bayesian theory would essentially tell us how 
best to assign weight to that observation for 
each O-A. 
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The popular model for the probability 
density distribution of observation 
errors, which  we believe to be too 
oversimplified, comprises: 
 

Gaussian + Uniform: 
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Gaussian-plus-uniform: 

This is the kind of probability model used in the present NLQC 
in the GSI, but it cannot be safely “switched on” until 50 
iterations have elapsed. (Note: “Uniform” makes a thin tail.) 
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Gaussian obs. Gaussian + Uniform obs. 

Note the bimodality 
of the green posterior 
density. 

But when we minimize 
“expected loss”, then, 
even for a bimodal 
(or multimodal)  
posterior density, it 
becomes possible to 
achieve a unique 
optimum. 

ee 

The broad Gaussian prior density (black) multiplies the 
observation likelihood to produce the posterior density, 
alternative versions of which are shown for four different 
locations of the observation (close to their sharp peaks).  
 
Theoretically, in a strictly Bayesian approach, the difficulty of 
multi-modality is resolved by convolving the posterior probability 
by a “loss function”, but this is not a practical possibility given the 
extremely high dimensionality of our problem. 
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The problem is avoided at the outset by a 
choice of fat-tailed distribution whose 
logarithm remains convex ---   
i.e., it has no inflection points. 
 
(Convex log-prior + convex log-likelihood 
 Convex log-posterior unimodality.)   
 
Moreover, such a distribution is believed to 
better characterize typical real data. (See 
discussion in Tavolato and Isaksen, QJRMS 
2014, whose “Huber norm” model also 
has this property.) 
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Gaussian mixture models 

A more general model of observational 
error, reflecting the probable importance 
of fluctuating representativeness, (i.e., 
environmental effects) is obtained by a 
construction involving a positive, 
continuously-weighted “mixture” of 
Gaussians.  
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The contributing Gaussians certainly have a 
varying scale parameter, which will always lead 
to heavy tails. But it is not much harder to 
construct a mixture in which the contributing 
Gaussians also have varying means. Thus, we 
admit nontrivial skewness into the family of 
probability models. 



In NOAA/NCEP Office Note 468, it was argued that a very natural 
symmetrical bell-shaped distribution expressible as a continuous 
Gaussian mixture is the classical “logistical distribution” 
 
                                     L(x) = .25 sech^2 [x/2] 
 
More general fat-tailed symmetric bell-shaped members come 
from this one simply by raising it to the positive power b: 
 
                                    f(x; b) = sech^{2b} [x/2] 
 
which can be shown (see the ON468 again) to preserve both 
convexity and the property of being a Gaussian mixture. 
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Further generalizations (i.e., additional 
parameters) to incorporate skewness and to 
provide additional fine control over the shape of 
the tails are available within the context of this 
proposed “Super-Logistic” model, though we 
are presently focusing on the implementation of 
the simpler, symmetrical model above, with its 
single shape parameter b. 



The negative-log-probability for the ordinary logistic distribution 
has the form shown below; the effect of the shape parameter b 
is simply to change the slope of its asymptotes: 

17 

-l
o

g[
P

(x
)]

 



Comparison of the weight from new nonlinear 
QC with one from current operational GSI QC  
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The method of jointly estimating the shape parameters, b,  and 
nominal standard deviation, sigma, is based on the statistical 
technique of “maximum likelihood”. This may need to be 
“regularized” for some data, e.g., by the inclusion of Bayesian priors, 
owing to the difficulty of solving problems of this kind. (And this ill-
conditioning problem only tends to get worse as parameters are 
added, which is our intention for the future.) 
 
Parallel tests currently under way to evaluate the new NLQC scheme 
in the 3D GSI appear to show improved convergence of the 
iterations. We are working on setting up corresponding tests in the 
RTMA/URMA. 
 
 

Current status and future plans 
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As a general rule, the optimal value for the nominal 
sigma is reduced by a small percentage when 
nonlinear quality control of this type is applied. 
 
Future extensions will include applications to 
correlated data. This should allow a large disparity 
between analysis and one observation to cause the 
automatic down-weighting of the neighboring 
observations made with the same instrument. 

Current status and future plans 

Thank you for your attention! 


