Paper: 160

Introduction

In this study, we report on the development of a computationally efficient simulator to Numerical radiance simulators can be applied to theoretical error analysis and model outgoing clear- and cloudy-sky radiances observed by the Infrared Imaging calibrations of satellite instruments in addition to the simulations of radiances and fluxes Radiometer (IIR) on board the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite under various atmospheric and surface conditions. Observations (CALIPSO) satellite.

Methodology

Wang, C., P. Yang, S. Platnick, A. K. Heidinger, B. a. Baum, T. Greenwald, Z. Zhang, and Edwards, D. P., and G. L. Francis (2000), J. Geophys. Res., 105(D14), 18135. Fu, Q., and K. N. Liou (1992), *J. Atmos. Sci.*, 49(22), 2139–2156. R. E. Holz (2013), *J. Appl. Meteorol. Climatol.*, *52*(3), 710–726. Hong, G., P. Yang, H.-L. Huang, S. a. Ackerman, and I. N. Sokolik (2006), *Geophys. Res.* Yang, P., L. Bi, B. a. Baum, K.-N. Liou, G. W. Kattawar, M. I. Mishchenko, and B. Cole *Lett.*, *33*(4), L04805. (2013), *J. Atmos. Sci.*, *70*(1), 330–347.

Development of a CALIPSO IIR radiance simulator

Chia-Pang Kuo^{1,*}, Ping Yang¹, Shaima L. Nasiri¹, Yongxiang Hu²

¹Texas A & M University, College Station, TX, United States ²NASA Langley Research Center, Hampton, VA, United States *E-mail: intelb52158@tamu.edu

Satellite Observation

TEXAS A&M **A**M

Acknowledgements

This study is supported by NASN Grant NNX12AL90G.