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•  The	  create	  total,	  direct	  (normal	  and	  horizontal),	  and	  
diffuse	  irradiance	  esHmates	  on	  RUC	  model	  grid.	  From	  the	  
irradiance	  esHmates	  produce	  solar	  PV	  power	  esHmates.	  

•  Leverage	  satellite,	  model	  hydrometeors,	  and	  high	  quality	  
surface	  measurements	  to	  train	  the	  technique.	  Compute	  
top	  of	  atmosphere	  irradiance	  to	  bound	  the	  regression	  
from	  above.	  

	  
•  Apply	  the	  technique	  over	  the	  CONUS	  domain	  to	  create	  

an	  hourly	  data	  set	  of	  irradiance	  resource	  assessment	  
(2006-‐2008).	  Working	  to	  extend	  this	  to	  2014.	  

•  Validate	  the	  methodology	  with	  observaHons.	  

MoHvaHon	  and	  Purpose	  



6	  NWP	  Hydrometeors	  (Rapid	  Update	  Cycle)	  

Calculated	  top	  of	  atmosphere	  Irradiance	  	  Calculated	  Zenith	  Angle	  

Data	  Inputs	  

5	  Satellite	  Channels	  (where	  available)	  

ground state and new observations to give an analysis220

of the state of the atmosphere over the assimilation time221

horizon. For the purposes of the solar irradiance model-222

ing, we extracted specific variables from then data. The223

model variables extracted were; water vapor, cloud wa-224

ter, rain, cloud ice, snow, graupel, and temperature at 2225

m. All the variables, except temperature, are the total226

throughout the vertical column within the model. The227

variables were chosen because of their known direct im-228

pact on solar irradiance attenuation. When all the data229

was extracted there was 25,663 hours of the 26,304 pos-230

sible (97.6%).231

In addition to the satellite and NWP assimilation data,
the solar irradiance falling onto the top of the atmo-
sphere is computed for each hour, taking into account
the eccentricity of the Earth’s orbit. The average ex-
traterrestrial irradiance (I0), about which the irradiance
fluctuates, is 1360.8 Wm�2 (Kopp and Lean, 2011; F.
Vignola, J. Michalsky and T. Sto↵el, 2012). The equa-
tion for the extraterrestrial irradiance outside the earth’s
atmosphere (normal to the photosphere of the sun) is

DNI0 = I0 ·
✓Rav

R

◆2
(1)

where Rav is the mean sun-earth distance and R is the
actual sun-earth distance at a specific instant. We use an
approximation for (Rav/R)2

✓Rav

R

◆2
⇡ 1.000110 + 0.034221 · cos (�)

+ 0.001280 · sin (�) + 0.000719 · cos (2�)
+ 0.000077 · sin (2�). (2)

Here � = 2⇡d/365.242 radians, and d is the day of the
year (Spencer, 1971). The error associated with the
Fourier approximation is very small (0.0001%). An-
other parameter that we computed for the dataset was
the solar zenith angle (sza), or more specifically the co-
sine of the zenith angle. The solar zenith angle is de-
fined as

cos (sza) = sin (lat) · sin (dec)
+ cos (lat) · cos (dec) · cos (ha), (3)

where dec is the declination angle, ha is the hour angle,
and lat is the latitude in radians. The declination angle
can be approximated by (Spencer, 1971)

dec = ✏ · sin[� +
⇡

180
· (279.93 + 1.915 · sin (�)

�0.0795 ·cos (�)+0.02 ·sin (2�)�0.00162 ·cos (2�))]
(4)

where ✏ is the earths axial tilt or obliquity of the ecliptic
in radians (0.409173c). The hour angle is simply com-
puted as

ha = ⇡ ·
 
1 � hr

12

!
� lon, (5)

with hr being the hour of the day in UT and lon is the232

longitude in radians.233

The last component of the data required for the
methodology is the ground based observations of so-
lar irradiance. As stated earlier, the observations are
taken from publicly available sites across the contigu-
ous USA. Both the SURFRAD and ISIS sites have an
measurement frequency of 3 minutes. To compensate
for the fact that the SURFRAD and ISIS sites are point
measurements and the NWP assimilation model vari-
ables are over a gridded area, we average the solar irra-
diance measurements over time. We average the solar
irradiance measurements from 6 minutes before the top
of the hour to 6 minutes after the top of the hour (5 mea-
surements). The averaging time was chosen to balance
the need for accurate measurements along with the need
for a reliable average value to use in the regression. It
is designed to be short enough that the clouds do not
have enough time (on average) to advect fully across the
RUC cell, but long enough to remove scattered cloud in
a small percentage of the box which happens to be over
the measurement site at a single time. Several averag-
ing time scales were investigated and the chosen time
scales gave the best overall performance. Data process-
ing was performed on the raw measurements. First, we
only used solar irradiance measurements that averaged
all of the data points. Secondly, we shifted all the times
of measurements to Coordinated Universal Time (UTC)
to make sure all data at di↵erent locations match with
the NWP and satellite data. Finally, we only used time
steps which had both measurements of DNI and DHI.
The DNI is measured at all sites with a Normal Inci-
dence Pryheliometer, while the DHI is measured with
an Eppley 8-48 ”black and white” pyranometer. The
SURFRAD and ISIS sites do measure GHI, however,
the measurements are less accurate than calculating the
GHI from the DNI and DHI measurements, known as
the component-sum technique (see e.g., J. J. Michalsky,
R. Dolce, E. G. Dutton, M. Hae↵elin, G. Major, J. A.
Schlemmer, D. W. Slater, J. R. Hickey, W. Q. Je↵ries,
A. Los, D. Mathias, L. J. B. McArthur, R. Philipona, I.
Reda and T. Sto↵el, 2003)

GHI = DNI · cos (sza) + DHI. (6)

The instrument errors were taken to be ±1% of the234

observed value (see documentation at http://www.235
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Ground-‐based	  ObservaHons	  (SURFRAD	  and	  ISIS)	  



Multivariate Multiple Regression
• We can now formulate the multivariate multiple regression

model:

Yn⇥p = Zn⇥(r+1)�(r+1)⇥p + ✏n⇥p,

E(✏(i)) = 0, Cov(✏(i), ✏(k)) = �ikI, i, k = 1,2, ..., p.

• The m measurements on the jth sample unit have covariance
matrix ⌃ but the n sample units are assumed to respond
independently.

• Unknown parameters in the model are �(r+1)⇥p and the
elements of ⌃.

• The design matrix Z has jth row
h

zj0 zj1 · · · zjr

i
, where

typically zj0 = 1.

536

•  We	  have	  p(=3)	  irradiance	  fields	  to	  calculate	  and	  n(=55258)	  observaHon	  of	  
each	  field.	  The	  observaHons	  are	  taken	  from	  10	  sites	  (6	  SURFRAD	  and	  4	  ISIS)	  

•  The	   regressors	   (β)	   are	   the	   satellite	   data	   (3	   infrared	   channels,	   a	   visible	  
channel,	  and	  a	  water	  vapor	  channel),	  the	  RUC	  AssimilaHon	  Model	  values	  
for	  water	  within	  the	  column	  (snow,	  ice,	  etc…),	  the	  temperature	  from	  the	  
model,	   the	   calculated	   top	   of	   atmosphere	   irradiance,	   and	   the	   zenith	  
angle.	  

•  The	  measurements	  are	  taken	  from	  2006	  –	  2008,	  and	  averaged	  over	  the	  
top	  of	  the	  hour	  (for	  12	  minutes)	  and	  matched	  up	  with	  the	  model	  data.	  

•  The	   data	   is	   quality	   controlled,	   and	   all	   night-‐Hme	   measurements	   were	  
removed.	  

Linear	  MulHvariate	  MulHple	  Regression	  



•  Method	  relies	  on	  high	  quality	  ground	  measurements	  to	  train	  the	  
regression	  procedure.	  We	  also	  use	  University	  of	  Oregon	  solar	  
measurement	  sites	  for	  verificaHon.	  	  

IniHal	  ValidaHon	  Sites	  

Multivariate Multiple Regression

• We estimate the regression coe�cients associated with the
ith response using only the measurements taken from the n

sample units for the ith variable. Using Least Squares and
with Z of full column rank:

�̂(i) = (Z0Z)�1Z0Y(i).

• Collecting all univariate estimates into a matrix:

�̂ =
h

�̂(1) �̂(2) · · · �̂(p)

i
= (Z0Z)�1Z0

h
Y(1) Y(2) · · · Y(p)

i
,

or equivalently �̂(r+1)⇥p = (Z0Z)�1Z0Y .
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Can	  use	   numerous	  mathemaHcal	   techniques	   to	   compute	  
the	   coefficients.	   We	   do	   not	   go	   into	   that	   here…	   (I	   used	  
SVD).	  

Linear	  MulHvariate	  MulHple	  Regression	  



resource at their site for a time period not encapsulated342

in the dataset produced by the present paper.343

Table 4: Statistics of the regressions over all of the training sites

Irradiance M
ea

n
(W
/m

2 )

M
B

E
(%

)

R
2 (%

)

R
M

SE
(%

)

C
V

(%
)

A 442.00 -2.82 94.17 20.67 20.48
GHI B 442.00 -3.33 92.96 22.63 22.39

C 442.00 -4.26 91.08 25.60 25.25

A 512.37 -12.41 77.75 41.82 39.94
DNI B 512.37 -15.33 71.80 47.92 45.40

C 512.37 -22.16 54.29 57.46 53.01

A 148.66 -4.19 82.87 42.42 42.21
DHI B 148.66 -4.63 80.83 44.56 44.32

C 148.66 -6.90 69.20 55.40 54.97

To analyze the performance of the linear multiple344

multivariate regressions, we calculated various statistics345

because a single statistic on its own may improve when346

the performance could be considered to be diminished347

depending upon the eventual use of the data. We display348

the most important statistics in Table 4 for the training349

set only. Within the training set, we have 10 di↵erent350

sites, and the accuracy of the regression varies from site351

to site, but the salient features are captured in the dis-352

played combined statistics (because we require a dataset353

that is as accurate as possible over as many sites as pos-354

sible). In Table 4 it becomes clear that the regression355

is best at estimating the global horizontal irradiance (in356

terms of all metrics shown). The range of GHI MBE357

is 2-4% for all of the regressions, which is similar to358

those found by others that consider much smaller geo-359

graphic areas (see, e.g., F. Vignola, P. Harlan, R. Perez360

and M. Kmiecik, 2007). The adjusted multiple linear361

correlation coe�cient is in the high 90% which, with362

the RMSE and CV of 20-25%, show great accuracy in363

predicting the GHI at the training sites overall. It can364

be seen in Table 4 that the regressions get progressively365

worse as we remove data from them. The regression366

with only satellite data is better than the assimilation367

data only, and both are worse than when satellite and368

assimilation data are used in concert. The improvement369

can be attributed to removal of errors and biases with370

the combination of the two data types. The remain-371

ing unexplained variance and error is likely to be due372

to measurement errors, aerosols, and the averaging of373

single point data over a gridded space. It is worth not-374

ing that the spatial resolution of the irradiance estimates375

is 13 km, yet they are able to reproduce accurate estima-376

tions by others (see, e.g., F. Vignola and R. Perez, 2004).377

The direct normal irradiance estimates are the worst in378

terms of MBE and R
2
. The large negative bias is as-379

sociated with the spatial resolution of the satellite and380

assimilation data versus the single point measurements381

of DNI. The measurement site can have small clouds382

(and aerosols) pass by that specific site, but not be reg-383

istered in the estimate. Another source of error is that384

the regression uses vertical column values. Thus, when385

the irradiance ray is impinging at an angle it may be386

attenuated by the atmosphere in neighboring cells.387

The statistics we have shown so far are for the train-388

ing set. As mentioned previously, we held back one389

SURFRAD and one ISIS site to perform validation of390

the procedure at two independent sites from the train-391

ing set. In Table 5, we show the same statistics as in392

Table 4, but for the validation sites. In addition, in Fig.393

2 we show histograms of the residuals for the GHI at394

the training and validation sites to compare the e↵ec-395

tiveness of each of the three regressions. Table 5 shows

Table 5: Statistics of the regressions over two initial validation sites

Irradiance M
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n
(W
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2 )

M
B

E
(%
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)

R
M

SE
(%

)

C
V

(%
)

A 458.13 2.41 89.37 19.57 19.42
GHI B 458.13 2.67 88.16 20.67 20.50

C 458.13 1.08 83.91 24.03 24.01

A 468.03 2.35 65.91 39.51 39.44
DNI B 468.03 0.21 58.98 43.27 43.27

C 468.03 -9.80 41.86 52.93 52.01

A 164.60 -9.26 66.26 40.33 39.25
DHI B 164.60 -10.32 63.43 42.08 40.80

C 164.60 -10.60 48.26 49.92 48.78

396

that in general terms the validation sites perform as to397

be expected. That is there are no significant change in398

RMSE, CV, or R
2
. However, there are some di↵erences399

that are worth discussing. The sign of the biases of the400

GHI and DNI are reversed and the R
2

is lower than pre-401

viously, which suggests that the procedure is less accu-402

rate at sites independent to the training set. It is to be403

expected that independent sites will not be as precise as404

the training set.405

To take a di↵erent look at the accuracy, we ana-406

lyzed the residuals of the estimated irradiance minus the407

ground-based measurement. We computed the proba-408

bility density functions (PDFs) of the residual divided409
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Regression	  StaHsHcs	  

•  The	  regression	  had	  differing	  success	  with	  total,	  direct,	  and	  diffuse.	  
•  We	  trained	  on	  10	  individual	  sites	  and	  computed	  the	  accuracy	  of	  the	  

regression	  at	  those	  sites.	  	  
•  We	  use	  one	  SURFRAD	  and	  one	  ISIS	  site	  for	  iniHal	  verificaHon.	  
	  

Composite	  metrics	  for	  training	  sites	   Composite	  metrics	  for	  iniHal	  verificaHon	  
sites	  
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Figure 8: Mean Biased Error (MBE) and Root-Mean-Squared Error
(RMSE) for the seven independent verification sites and the initial
verification sites. The light gray is for the GHI, the dark gray is for
the DNI, and the black is for the DHI.
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Figure 9: The average estimated GHI in kWh/m2/day for the con-
tiguous USA over the three year period of 2006–2008. The South
West has the greatest resource while the North West has the least. All
boundaries have been removed to display the detail of the data.

Zenith Angle) along with the meteorological data (wind694

speed at 10m and temperature at 2m). Secondly, we695

compute the cell temperature and the angle of incidence696

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

Figure 10: The average estimated DNI in kWh/m2/day for the con-
tiguous USA over the three year period of 2006–2008. The South
West is the absolute best resource area whereas the rest of the USA is
much poorer. All boundaries have been removed to display the detail
of the data.

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Figure 11: The average estimated DHI in kWh/m2/day for the con-
tiguous USA over the three year period of 2006–2008 (the range is
di↵erent to the GHI and DNI plots). The Gulf Coast has the most
DHI resource, the South West has the least DHI, and in general the
East has more DHI than the West. All boundaries have been removed
to display the detail of the data.

of the solar irradiance on the tilted and tracked panel.697

Thirdly, we calculate the power falling onto the panel698

from the irradiance fields. Fourthly, the current and volt-699

ages within the panel are approximated (the equations700

in D. L. King, S. Gonzalez, G. M. Galbraith, and W.701

E. Boyson (2004) and NREL SAM are empirically de-702

rived). Finally, the current and voltage are combined to703

calculate the power for the panel. There are equations704

within the algorithm, which are based on NREL SAM,705

that compute the derating due to the panel structure and706

material. The output of the panel is restricted to 115% of707

the nameplate capacity. After the algorithm has finished708
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Figure 6: Time series of measured (dashed red) and estimated (solid blue) DNI for Hermiston, OR. The top panel is for the 31 days from January
1 2006 and the bottom panel is for the 31 days following June 1 2006. The panels show high correlation between the estimated and the measured.

year average of GHI, DNI, and DHI over the contiguous624

USA in kWh/m2/day. To convert from kWh/m2/day to625

average W/m2 multiply it by 41.695, so the range from626

Fig. 9 is 125–271 W/m2. Figure 9 shows that the South-627

West is the best resource site in terms of GHI, which is628

very important for solar PV. All three maps show that629

the very North West and North East are very poor in630

terms of irradiance. The maps are consistent with other631

datasets, but cover a wider time period and geographic632

area with no blending of di↵erent datasets. Figure 10 is633

interesting because DNI is very important for Concen-634

trated Solar Power (not modeled in the present paper)635

and indicates that the very best locations in terms of re-636

source is the far South West. The map of Fig. 11 shows637

how clear the skies are over the desert South West,638

and how the Gulf Coast region is dominated by large639

amounts of DHI versus DNI, which means it would be640

suitable for solar PV (as GHI is a relatively good re-641

source there), but not as suitable for CSP. Note that the642

scale has changed in Fig. 11. Figures 9–11 illustrate643

the detail within the dataset, but they are averages of the644

whole three year period. The true value of the dataset645

is the spatial and temporal resolution which is used in646

section 4 to model solar PV power output at all the sites647

across the contiguous USA. The dataset will be utilized648

in future research to model CSP power output over the649

contiguous USA and in detailed electric power system650

modeling.651

4. Solar Photovoltaic Power Estimates652

In the present section, we will apply the contiguous653

USA regression derived solar irradiance estimates to a654

power output algorithm for a specific solar PV config-655

uration. We will briefly outline the formulation of the656

power model, a few specifics of the configuration we657

chose, and show the resource assessment for that con-658

figuration at the end.659

To compute the solar photovoltaic power output, the660

total, direct, and di↵use solar irradiance estimates from661
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1 2006 and the bottom panel is for the 31 days following June 1 2006. The panels show high correlation between the estimated and the measured.
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Figure 3: The di↵erence between the estimated irradiance and the
measurement versus the measured irradiance. The top panel is for
GHI, the middle panel is for DNI, and the bottom panel is for DHI.
The black is for regression scheme A, red is for scheme B, and blue is
for C (similar to all other figures). The light green line designates the
zero-line.

caused by interference of the beam by clouds, aerosols479

and atmospheric disturbances in neighboring grid cells480
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Figure 8: Mean Biased Error (MBE) and Root-Mean-Squared Error
(RMSE) for the seven independent verification sites and the initial
verification sites. The light gray is for the GHI, the dark gray is for
the DNI, and the black is for the DHI.
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Figure 9: The average estimated GHI in kWh/m2/day for the con-
tiguous USA over the three year period of 2006–2008. The South
West has the greatest resource while the North West has the least. All
boundaries have been removed to display the detail of the data.
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Figure 10: The average estimated DNI in kWh/m2/day for the con-
tiguous USA over the three year period of 2006–2008. The South
West is the absolute best resource area whereas the rest of the USA is
much poorer. All boundaries have been removed to display the detail
of the data.
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Figure 11: The average estimated DHI in kWh/m2/day for the con-
tiguous USA over the three year period of 2006–2008 (the range is
di↵erent to the GHI and DNI plots). The Gulf Coast has the most
DHI resource, the South West has the least DHI, and in general the
East has more DHI than the West. All boundaries have been removed
to display the detail of the data.
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Figure 5: Time series of measured (dashed red) and estimated (solid blue) GHI for Burns, OR. The top panel is for the 31 days from January 1
2006 and the bottom panel is for the 31 days following June 1 2006. The panels show high correlation between the estimated and the measured.

pared to the training sites is due to full dataset being590

analyzed, as can be observed by reading the value for591

the ISIS (HNX) and SURFRAD (PSU) sites and com-592

paring to the initial verification in Table 5; again high-593

lighting the importance of being able to obtain all of594

the possible measurements. The most important feature595

from Fig. 8 is that the regression technique created here596

performs with the same order of accuracy as other avail-597

able techniques (see, e.g., F. Vignola, J. Michalsky and598

T. Sto↵el, 2012) with the added benefit of being created599

specifically to be temporally aligned with other datasets600

on the same spatial grid so that they can be applied to601

electric power modeling seamlessly. We verified our602

technique against the SUNY dataset provided by NREL603

(http://maps.nrel.gov/prospector) for time pe-604

riods that overlapped the one investigated here at a605

sample of the seven independent sites and found that606

the present regression technique is superior in terms of607

MBE and RMSE. For example, at the Burns, OR site608

the current technique has an MBE of -1.64% for GHI,609

while the SUNY dataset over the same period has an610

MBE of -2.00%. Similar statistical di↵erences were611

found with the other irradiance species and di↵erent612

sites. The di↵erences are not very large, and a review of613

the SUNY dataset statistics can be found in, e.g. Not-614

trott and Kleissl (2010); Djebbar et al. (2012). More615

comparisons need to be done at more sites to establish616

if indeed the current technique is consistently more ac-617

curate.618

The linear multivariate multiple regression method619

has provided accurate estimates of the solar irradiance620

over the contiguous USA. The dataset is comprised of621

⇡152,000 geographic cells that each contain ⇡26,000622

hourly data points. In Figs 9–11, we show the three-623

11

Burns,	  OR	  

!400$

!300$

!200$

!100$

0$

100$

200$

300$

400$

500$

!400$ !300$ !200$ !100$ 0$ 100$ 200$ 300$ 400$ 500$

GHI	  EsHmate	  Error	  (W/m2)	  

Solar	  Anywhere	  GHI	  EsHmate	  Error	  (W/m2)	  



Irradiance	  to	  Solar	  Photovoltaic	  Power	  
•  Take	  the	  output	  GHI,	  DNI	  and	  DHI	  and	  use	  them	  as	  inputs	  to	  a	  power	  

modeling	  algorithm.	  
•  In	  addiHon	  take	  temperature	  (at	  2	  m)	  and	  wind	  speed	  (at	  10	  m)	  from	  the	  RUC	  

to	  help	  provide	  an	  esHmate	  of	  the	  panel	  temperature.	  

15 20 25 30%	  



•  The	  results	  are	  promising,	  even	  though	  an	  older,	  lower	  resoluHon	  model	  was	  uHlized	  
for	  the	  regression.	  

•  The	  regression	  technique,	  once	  trained,	  is	  very	  computaHonally	  inexpensive	  to	  be	  
used	  in	  real-‐Hme	  to	  improve	  GHI,	  DNI	  and	  DHI	  esHmates.	  

•  The	  solar	  irradiance	  esHmates	  are	  comparable	  to	  other	  products	  available.	  

ü  We	  will	  extend	  the	  dataset	  to	  2014	  at	  13	  km	  and	  perform	  the	  same	  technique	  
on	  3	  km	  HRRR.	  

ü  Will	  start	  to	  incorporate	  the	  GOES	  East/West	  composite	  satellite	  data.	  

ü  CalculaHng	  the	  line-‐of-‐sight	  model	  data	  rather	  than	  verHcal	  column.	  

ü  UHlizing	  NREL’s	  solar	  measurements	  and	  other	  sources	  of	  measurements	  to	  
improve	  the	  accuracy	  of	  the	  regression.	  

ü  Extend	  the	  esHmates	  to	  forecast	  hours	  

Conclusions	  and	  Future	  Work	  
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