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•  was my postdoc advisor at Goddard 
•  In Milt Halem’s group, which included 

– Bob Atlas 
– Shukla 
– Wayman Baker 
– Joel Susskind, ….. 

•  There are many opportunities for a post doc 
at GSFC 

Eugenia Kalnay …. 
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•  How can we use ensembles to improve forecasts, skill vs. spread, etc.? (LAF, 
Ensemble forecasts) 

•  How can we use the data assimilation cycle to identify and correct model bias? 
(VarBC) 

•  How should OSSEs be designed? 
•  Can we solve variational data assimilation with nonlinear obs operators by using 

conjugate gradient minimization? (3d-Var) 
•  Sensitivity to QC decisions? (Robust QC, VarQC, Huber norms) 
•  What can we do when a feature (a storm) is in the wrong place in the 

background? (FCA, EnKF) 
•  What can we do when only half of a feature is observed by a satellite? (EnKF) 
•  Would it be possible/better to use radiances in data assimilation instead of 

retrievals? (GSI, IFS) 
•  Can we determine time continuous solutions to the governing equations that 

best fit some observation? (Can we solve the 4d-VAR problem?) 

Postdoc topics 
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•  Many of these topics are still relevant 
•  I will touch on some of my early attempts in 

discussing future directions 
•  In this personal view of where DA is going 
 

30+ years later…. 
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•  All the DA methods discussed here depend 
on optimization: 

– minX (J); where J = Jb + Jo 
•  Balance the misfits to prior info and current 

observations. 
•  Many assumptions, transforms & design 

choices.  
– Characterization of the obs errors. 
– Choice of control variable X. 

For context…. 
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•  We will embrace messy data, nonlinear and 
containing signals from more than one variable and 
from more than one component of the earth 
system. 
–  More emphasis on wind data 
–  Effective use of cloud, precip, hyperspectral data 
–  SST couples ocean and atmosphere 
–  Ozone couples chemistry and atmosphere 

•  All data is useful, but even small amounts of very 
accurate data—GPS/RO, DWL, CLARREO, …—
are needed to tie down the DA system. 

 

40–50+ years later (circa 2025-2035)…. 
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•  Large scale quantum computing solves fully 
nonlinear DA problem 

– minX (J) 
•  by evaluating J for all X. 
•  For coupled earth system model. 
•  Exercise left for the audience: Determine effective way to use quantum 

computing to evaluate/represent the uncertainty of the solution to use in 
the next DA cycle. 

75+ years later (circa 2060)…. 
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LAGGED AVERAGE FORECASTING, AN ALTERNATIVE TO MONTE CARL0 FORECASTING 101 

forecast of the forecast error covariances could be 
used to improve the assimilation of data (Pitcher, 
1977). 

The advantages of a combined statistical and 
dynamical approach are most easily illustrated 
within the phase space description of an at- 
mospheric model. In such a phase space each 
coordinate is the amplitude of one model variable. 
A point in the phase space is a model state; as the 
model evolves the point representing the model 
state describes a trajectory in phase space. (Dis- 
cussions of the phase space description of 
meteorological dynamical systems can be found in 
papers by Fleming (1971), Epstein (1969), Gleeson 
(1970) and others.) Consider a particular point, C ,  
and an ensemble of points uniformly covering a 
small sphere centered at C (Fig. la). We will call 
the forecast started from C the central forecast and 
the average of the forecasts started from the points 
on the sphere, the ensemble forecast. For short 
forecast times, f < rNL, where rNL is the time when 
nonlinear effects can no longer be neglected, the 
difference between each member of the ensemble 
and the central forecast is governed by linear 
dynamics. The sphere deforms into an ellipsoid 
(Lorenz, 1965) and the central forecast and 
ensemble forecast coincide (Fig. 1 b). Typically, for 
forced dissipative systems as the ellipsoid changes 
shape-flattening in some directions and expand- 
ing in others-it shrinks in volume while simul- 

Fig. I. Schematic phase space description of the central 
( 0 )  and ensemble ( x )  forecasts. At the initial time (a) the 
central forecast is the center of the spherical ensemble. 
For I < rNL (b) the central and ensemble forecasts 
coincide; the ensemble is ellipsoidal. At later times, I t 
rNL (c), the central forecast and the ensemble forecast 
diverge; the ensemble loses its symmetry. 

taneously the r.m.s. distance between its center and 
its surface increases. At longer forecast times, f 2 
rNL, the central forecast and ensemble forecast 
differ because the ensemble loses its symmetry 
(Fig. lc). The dispersion of the ensemble continues 
to increase in the nonlinear regime until some 
equilibrium range is attained. Now suppose that at 
the initial time, each point on the sphere is equally 
likely to be the true state. Of all possible model 
forecasts the central forecast is best for f < rNL 
because it minimizes the expected squared forecast 
error. However, the ensemble of forecasts contains 
more information: the ensemble forecast is a better 
forecast than the central forecast for f > rNL and 
the dispersion of the ensemble is indicative of the 
forecast skill. In general the initial true state will not 
be restricted to a spherical shell, but the above 
discussion applies to each surface of equal pro- 
bability density in the phase space. 

Stochastic dynamic prediction (Epstein, 1969) 
offers a rational method of dealing with uncertain- 
ties in the initial data of an otherwise deterministic 
initial value problem by solving the continuity 
equation for probability which results from the 
generalization of the above discussion. It is not 
easy to include in this theory the effects of model 
imperfection; it is necessary to specify the 
statistical properties of the model errors (Fleming, 
1972; Pitcher, 1977). This limits the reliability of 
the results of the method and it is likely that the 
higher order moments of the probability dis- 
tribution are affected most. For this reason and for 
practical reasons prognostic equations are retained 
for only the lowest order moments of the prob- 
ability distribution. This introduces a closure 
problem which may be treated by a variety of 
methods (Epstein, 1969: Fleming, 197 I ;  Pitcher, 
1977: Laurmann. 1978: Farago, 1978). Even so, 
implementation of the method is a formidable task 
for all but the simplest models: if the basic 
deterministic model has M prognostic variables 
then a stochastic dynamic model which ignores all 
but first and second moments has O ( M ’ )  prog- 
nostic variables. Furthermore one must derive and 
code the particular governing equation and 
parameterize the higher order moments. 

One way of avoiding the difficulties of stochastic 
dynamic prediction is to use an ensemble forecast 
method. such as the Monte Carlo forecast (MCF) 
method (Epstein. 1969; Leith. 1974a; Seidman. 
198 1 ). In the simplest form of the MCF method an 

Tellus 35A (1983), 2 

LAF :: lagged average forecasting 

From%Hoffman%and%Kalnay%(1983,%Tellus)%
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•  Toy model 
– PE Nature 
– QG forecast 

•  Finite difference 
gradients to 
minimize Jo 

•  Works, but at the 
end of the interval, 
errors project on 
growing modes 

 

4d-Var prototype 

Analysis%error%

Obs%error%

From%Hoffman%(1986,%MWR)%



© Atmospheric and Environmental Research, Inc. (AER), 2015  10 7 Jan  2015 

•  2d-Var based on the idea of smoothing splines 
to analyze scatterometer data 

•  Initial work on the QE2 storm of 1978 
–  Large scale minimization 
– Very nonlinear 

•  ambiguity removal, dynamical constraint 
– Half a storm is observed 
– Background is too weak 

•  VAM is now used to produce the CCMP ocean 
surface wind data product 

Variational analysis method (VAM) 
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MAY 2003 591H O F F M A N E T A L .

FIG. 1. 2DVAR observation operators (dimensionless) evaluated for one WVC using (a) s 0 values directly and (b)
ambiguous winds. (c) The combination of JAMB 1 JSPD. (d) For reference, the corresponding two-wind observation
operator in use at ECMWF (Stoffelen and Anderson 1997a).

minima. The strong nonlinearity near the origin is re-
moved. Note that if the background wind field is close
to one of the four wind solutions, the influence of other
observations or meteorological constraints will be nec-
essary to shift the analysis from near one minimum to
another during the 2DVAR minimization. Figure 1
shows that JAMB is only grossly similar to JNRCS, which
is a precise description of the likelihood of the wind
vector given the s 0 observations. Adding JSPD to JAMB
(Fig. 1c) improves this similarity somewhat.
The JAMB formulation was originally developed for

SASS for which all ambiguities were roughly equally
likely. NSCAT likelihood values have significant skill
for identifying the correct ambiguity. For example in
Fig. 1a the eastward and westward ambiguities have
deeper minima in the plot of JNRCS because they are more
likely. This information could be included in an ad hoc
way in JAMB, but our experiments show that both the

JNRCS and JAMB formulation tend to suffer from the same
deficiency, namely, that the minimizer tends to get
trapped by whichever relative minimum is closest to the
initial estimate. Our solution is dual ambiguity pro-
cessing (section 4c).
For comparison, we also show the two-wind loss

function of Stoffelen and Anderson (1997a) used at
ECMWF for ERS (Fig. 1d). [A similar formulation but
allowing more than two ambiguities for NSCAT is de-
scribed by Figa and Stoffelen (2000).] This is the best
behaved of the three functions, but it is also the crudest
approximation to the MLE. Only the two most likely
winds are used since one of these solutions is very close
to the true wind more than 90% of the time. The smooth
nature of this function allows the analysis to be moved
from one minimum to another during the assimilation
more easily than either the MLE or H84 formulation.
However, this formulation may also permit an analysis

Scatterometer obs functions 

From%Hoffman%et%al.%(2003,%JTech)%
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FIG. 1. 2DVAR observation operators (dimensionless) evaluated for one WVC using (a) s 0 values directly and (b)
ambiguous winds. (c) The combination of JAMB 1 JSPD. (d) For reference, the corresponding two-wind observation
operator in use at ECMWF (Stoffelen and Anderson 1997a).

minima. The strong nonlinearity near the origin is re-
moved. Note that if the background wind field is close
to one of the four wind solutions, the influence of other
observations or meteorological constraints will be nec-
essary to shift the analysis from near one minimum to
another during the 2DVAR minimization. Figure 1
shows that JAMB is only grossly similar to JNRCS, which
is a precise description of the likelihood of the wind
vector given the s 0 observations. Adding JSPD to JAMB
(Fig. 1c) improves this similarity somewhat.
The JAMB formulation was originally developed for

SASS for which all ambiguities were roughly equally
likely. NSCAT likelihood values have significant skill
for identifying the correct ambiguity. For example in
Fig. 1a the eastward and westward ambiguities have
deeper minima in the plot of JNRCS because they are more
likely. This information could be included in an ad hoc
way in JAMB, but our experiments show that both the

JNRCS and JAMB formulation tend to suffer from the same
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trapped by whichever relative minimum is closest to the
initial estimate. Our solution is dual ambiguity pro-
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ECMWF for ERS (Fig. 1d). [A similar formulation but
allowing more than two ambiguities for NSCAT is de-
scribed by Figa and Stoffelen (2000).] This is the best
behaved of the three functions, but it is also the crudest
approximation to the MLE. Only the two most likely
winds are used since one of these solutions is very close
to the true wind more than 90% of the time. The smooth
nature of this function allows the analysis to be moved
from one minimum to another during the assimilation
more easily than either the MLE or H84 formulation.
However, this formulation may also permit an analysis

Sigma0%backscaKer%values% Ambiguous%wind%vectors%
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Radiances or retrievals 

From%Hoffman%and%Nehrkorn%(1989,%MWR)%
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•  Linearization 
 xR = AxT + (I – A)xa 

•  Provide retrievals xR, covariance SR along 
with prior information, xa and Sa to the DA 

A = I – SR Sa
-1

 
•  Can transform to observations with unbiased, 

uncorrelated, unit variance errors 
•  xa and Sa can come from the ensemble in an 

EnKF setting 

Radiances or retrievals 

From%Hoffman%(2011,%arXiv)%%
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•  Position errors of features are both common and 
problematical 
–  Non-Gaussian error statistics  
–  Poor convergence of variational analysis schemes 

•  FCA represents errors (or differences) in terms of errors 
of alignment and errors of amplitude and “random” errors  
–  dWRF developed as a feature alignment pre-processor for 

WRFDA  
–  dWRF uses WRF software and we plan to integrate feature 

alignment in the WRFDA 

Feature Calibration and Alignment (FCA) 
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dWRF :: feature alignment in WRFDA 
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(d) Adjusted Background

40 60

30
40

50

 −100 

 −98 

 −96 

 −94 

 −92 

 −90 

 −88 

 −86 

 −84 

 −82 

 −80 

 18 

 20 

 22 

 24 

 26 

 28 

 30 

 32 

20

40

60

80

100

(e) Background Error
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(f) Residual Error
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FIG. 5. The (a) dWRF- and (b) FCA-calculated displacements at 12 UTC, using simulated (a)
radiosonde and (b) IWV observations, respectively. Plotted as in Fig. 4: Displacements are shown
as arrows pointing in the direction that the background field should be displaced, but are only
plotted every third grid point in the x-direction and every other grid point in the y-direction for
clarity.
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(d) Adjusted Background
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(e) Background Error
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(f) Residual Error
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FIG. 6. Control (i.e., not aligned) (a) IWV and (b) IWV error at 12 UTC. This control analysis is
equal to the background IWV field and is identical to the NR at 06 UTC (Fig. 2.a). The background
error (b) is thus equal to the difference of the nature run at 06 UTC (Fig. 2.a) minus 12 UTC
(Fig. 2.b).
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FIG. 7. dWRF-aligned (a) IWV and (b) IWV error at 12 UTC.
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Integrated%water%vapor%(IWV)%at%12%UTC%
28%Aug%2005%for%H.%Katrina.%
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•  Strong nonlinear signals are valuable, even if the 
signals come from difference earth system 
components. 

•  We do need some highly accurate data to tie down 
our error statistics. (GPS, DWL, …) 

•  Knowledge, intuition about error structure is helpful to 
reduce degrees of freedom 

•  EnKF vs. 4d-Var? This may not be the right question. 
Hybrid DA now seems superior if the necessary 
discipline and effort are available for 4d-Var.  

•  DA systems relatively insensitive to how we 
implement the obs functions, but can be very 
sensitive to data selection and QC. 

Lessons learned  
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•  At best our models only shadow reality. 
•  Our solutions are never optimal because we 

make approximations, have inexact 
knowledge of the error statistics. 
–  In the nonlinear regime ad hoc methods may out-

perform classical optimization. 
– Define optimal! 

Closing thoughts 


