

Towards a More Accurate Machine Learning Multi-Model Ensemble Method for Direct Solar Irradiance Forecasts

Never Stand Still

Faculty of Engineering

School of Photovoltaic and Renewable Energy Engineering

S. Karthik Mukkavilli

Merlinde J. Kay (UNSW) Abhnil A. Prasad (UNSW) **Robert A. Taylor (UNSW)** Alberto Troccoli (CSIRO)

AIM

Determine only from radiative scheme ensembles in WRF, what is the Direct Normal Irradiance (DNI) forecast performance without aerosol observational data inputs

MOTIVATION

SOLAR FORECAST - importance of accuracy

Short-term irradiance prediction (hrs-days) critical in solar grid integration by anticipating and compensating for power fluctuations. We are investigating:

- Numerical Weather Prediction (NWP)
 - Post-processing with Machine Learning
- Aerosol Transports
- Cloud Motion Vectors (other UNSW project)

Based on reliability of DNI forecasts CSP plants:

- dispatch electricity onto grid
- bid into national electricity market to capture peak prices
- schedule thermal energy storage

BACKGROUND

PREVIOUS STUDY¹ - revealed that AEROSOL EVENTS in some REGIONS are particularly IMPORTANT for SOLAR forecasts

DNI variability

- Gridded hourly solar DNI ground data (2000-2012)
- Spatial resolution of 0.05° (≈5 km)
- Accuracy of ± 20 Wm⁻²
- Variability is due to clouds & aerosols

AOD variability

- Gridded monthly AOD data at 550 nm from MODIS Terra (2000-2012)
- Spatial resolution of 1° (≈111 km) Accuracy of ± 15 %

1: Prasad A. et al. (2014), Assessment of DNI-cloud connections using satellite data over Australia, Applied Energy (under review)

BACKGROUND

Correlation of Deseasonalised DNI and AOD anomaly

- The total change in AOD and DNI was within ± 0.1 and ± 40 Wm⁻² respectively over Australia for the period of this study.
- The AOD anomaly significantly decreased over northern Australia which may have led to the increase in DNI over the period.
- These spatio-temporal characteristics of AOD and DNI variability would help in siting future CSP installations in Australia.

WRF MODEL SETUP – Radiative Schemes

V	<u>VRF</u>		Shortwave radiative transfer code						
	<u>ode</u>	<u>Scheme</u>	<u>technique</u>	<u>Technique</u>					
	1	Dudhia	Dudhia (1989, JAS)	Fast & simple downward broadband calculation (cloud albedo & absorption)					
			Chou and Suarez (1994, NASA Tech						
	2	Goddard	Memo)	Spectral Method (clouds)					
	4	RRTMG	lacono et al. (2008, JGR)	Spectral method (14 bands, clouds, aerosols)					
	5	New Goddard	Chou and Suarez (1999, NASA Tech Memo)	Spectral Method (11 bands, clouds)					
	Gu et al. (2011, JGR), Fu and Liou (1992,								
	7	FLG	JAS)	Correlated k-distribution					
	99	GFDL	Fels and Schwarzkopf (1981, JGR)	Spectral scheme (cloud s)					
ſ	Planetary Boundary Layer (YSU Scheme), Microphysics (new Thompson except								

GFDL uses only Eta Ferrier), Cumulus (Kain Fritsch), Land surface model (Noah)

WRF Radiative Transfer Codes for Sensitivity Analysis (sw: shortwave & lw: longwave)

Domain 1 uses six radiative scheme codes: (1) Dudhia-1sw & RRTM-1lw ; (2) Goddard-2sw & RRTM-1lw; (3) RRTMG-4 sw & lw; (4) New Goddard-5 sw & lw; (5) FLG-7sw & lw; (6) GFDL-99sw & lw

Domain 2 uses four radiative scheme codes:(1) Dudhia-1sw & RRTM-1lw ; (2) Goddard-2sw & RRTM-1lw; (3) FLG-7sw & lw; (4) GFDL-99sw & lw

MICROPHYSICS (WSM-3 vs Thompson)

2: WSM3, Hong, Dudhia and Chen (2004, MWR) 3: Thompson and Eidhammer (2014, JAS)

RESULTS – WRF NWP SOLAR FORECASTS

48 Hours from 2009-02-07-00-00 UTC (for each climate zone over two domains)

DNI NWP produced much larger biases than GHI

RESULTS – NWP FORECAST METRICS

Machine Learning with Boosted Decision Tree Regression³ - BUSHFIRE CASE (48 Hours from 2009-02-07 00:00:00 UTC)

BSh

Cfb

Cfa

Csa

3: Friedman, J. Greedy function approximation : A gradient boosting machine. Annals of Statistics, 2001

Radiative Scheme Ensemble Learner – BUSHFIRE CASE

Radiative Schemes (predictors) for ensemble forecast

Scheme Importance (relative weights of predictors)

Predictor Relative Importance

Х

١Y

Predictors

Boosted Decision Tree Regression – DUST STORM CASE

(48 hrs from 2009-09-21 12:00:00 UTC)

Radiative Scheme Ensemble Learner – DUST STORM CASE

SUMMARY – Predictors from machine learning and NWP forecasts

						Humid
	Koppen Classification	Mediterranean	Desert	Semi-Arid	Oceanic	Subtropical
			Alice			
	Location	Adelaide	Springs	Broome	Melbourne	Rockhampton
	Dust storm Case RMSE					
	(W/m ²) - Sep '09	1.34	23.83	29.93	1.54	35.70
	Most important radiative		Dudhia-	Dudhia-	FuLiouGu_D	
	scheme predictor	GFDL_D2	RRTM_D2	RRTM_D2	2	RRTMG
	No. of Decision Trees	44	150	89	67	119
	Bushfire Case RMSE					
	(W/m²) - Feb '09	No ground data	129.97	157.82	225.32	118.51
	Most important radiative		Goddard-	Goddard-	Dudhia-	Goddard-
	scheme predictor	N/A	RRTM D1	RRTM D1	RRTM D1	RRTM D2
	No. of Decision Trees	N/A	108	65	42	54
GHI	Dust storm Case RMSE					
	(W/m²) - Sep '09	2.6	40.4	2.3	1.8	1.3
	Most important radiative		Dudhia-	Dudhia-	Dudhia	Dudhia RTM D
	scheme predictor	GFDL_D2	RRTM_D1	RRTM_D2	_RRTM_D1	1
	Bushfire Case RMSE					
	(W/m²) - Feb '09	No ground data	100.8	84.3	157	84.3
	Most important radiative scheme predictor	N/A	Goddard- RRTM D1	Dudhia- RRTM D2	Goddard- RRTM D1	Goddard- RRTM D2

CONCLUSIONS

- Overall, Dudhia-RRTM for dust and fire seem to be the most consistent predictor for DNI in Australia from this study (without aerosol input)
- □ Results in Feb gave higher RMSE than in Sep.
- Goddard-RRTM seems to produce better results in February than September at non-major aerosol event sites
- □ GFDL gave better prediction for [Mediterranean zone] Adelaide (no ground data in Feb)
- RRTMG must be tested with aerosol input, without YSU/KF scheme and run at higher resolutions alongside (10KM) CAM scheme
- Further shortwave ensemble performance evaluation with other PBL and cumulus schemes using Thompson required

Other WRF ensemble test literature supporting conclusions: Evans, 2011, Climate Dynamics, Evaluation of a WRF Physics Ensemble over South-East Australia

- In Evans et al. 36 member ensemble test, YSU-KF-RRTMG also ranked below YSU-KF-Dudhia
- MYG-KF-WDM5-Dudhia ranked highest followed by
- However, RRTMG with other PBL & Cu schemes ranked higher than with YSU-KF used in this study

UNSK AUSTRALIA	THA	NK YOU!		
Never Stand Still	Faculty of Engineering	School of Photovoltaic and Renewable Energy Engineering	9	
Contact:	karthik[dot]skmukkavilli@gmail.com			

Acknowledgement:

Australian Renewable Energy Agency

Australian Solar Energy Forecasting System (ASEFS) Project Partners