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Determine only from radiative scheme ensembles in WRF, what is the Direct Normal 
Irradiance (DNI) forecast performance without aerosol observational data inputs 

AIM 

Based on reliability of DNI forecasts CSP plants: 
 dispatch electricity onto  grid  
 bid into national electricity market to 

capture peak prices  
 schedule thermal energy storage 

Short-term irradiance prediction (hrs-days) 
critical in solar grid integration by anticipating 
and compensating for power fluctuations. We 
are investigating: 
 Numerical Weather Prediction (NWP) 

 Post-processing with Machine Learning 
 Aerosol Transports 
 Cloud Motion Vectors (other UNSW project) 

SOLAR FORECAST - importance of accuracy 

MOTIVATION 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BACKGROUND 

• Gridded monthly AOD data at 550 nm 
from MODIS Terra (2000-2012) 

• Spatial resolution of 1° (≈111 km) 
Accuracy of ± 15 % 

1: Prasad A.  et al. (2014), Assessment of DNI-cloud connections using satellite data over Australia, Applied Energy (under review) 

PREVIOUS STUDY1 - revealed that AEROSOL EVENTS in some 

REGIONS are particularly IMPORTANT for SOLAR forecasts 

DNI variability 
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AOD variability 
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Longitude 

• Gridded hourly solar DNI ground data  (2000-
2012) 

• Spatial resolution of 0.05° (≈5 km) 

• Accuracy of ± 20 Wm-2 

• Variability is due to clouds  & aerosols 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BACKGROUND 

Correlation of Deseasonalised 
DNI and AOD anomaly 
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 Strong anti-correlation between 
DNI and AOD anomaly observed 
in the north and southeast.  

 Strong variability (~0.03-0.05) in 
the AOD1.  

 Most of these regions active 
with biomass burning and dust 
storm activity.  

 The total change in AOD and DNI was within ± 0.1 and ± 40 Wm-2 respectively over 
Australia for the period of this study.   

 The AOD anomaly significantly decreased over northern Australia which may have 
led to the increase in DNI over the period.  

 These spatio-temporal characteristics of AOD and DNI variability would help in siting 
future CSP installations in Australia.   



DUST STORM  

Forecast Horizon: 48 Hours from 

2009-02-07-00-00-00 UTC 

from 2009-09-21-12-00-00 UTC 

BUSHFIRE 

EVENT CASE STUDIES 

D1 

Climate 
zones  

Koppen 
classified 

Five test 
sites for 

solar 
forecasts &  
validation 

with ground 
datasets 

DOMAINS  

– 1  (50 KM) & 2 (10 KM) 

REGIONS 

D2 

WRF MODEL SETUP 

GFS boundary conditions and NCEP final 
operational analysis global data at 1 degree grids 
every six hours. No aerosol input was included. 

outer nested 



WRF 
Code Scheme 

Shortwave radiative transfer code 
technique Technique 

1 Dudhia Dudhia (1989, JAS) 

Fast & simple downward 
broadband calculation 

(cloud albedo & absorption) 

2 Goddard 
Chou and Suarez (1994, NASA Tech 

Memo) Spectral Method (clouds) 

4 RRTMG Iacono et al. (2008, JGR) 
Spectral method (14 bands, 

clouds, aerosols) 

5 New Goddard 
Chou and Suarez (1999, NASA Tech 

Memo) 

Spectral Method (11 bands, 
clouds) 

 

7 FLG 
Gu et al. (2011, JGR), Fu and Liou (1992, 

JAS) Correlated k-distribution 

99 GFDL Fels and Schwarzkopf (1981, JGR) Spectral scheme (cloud s) 

WRF Radiative Transfer Codes for Sensitivity Analysis  
(sw: shortwave  & lw: longwave)  

 
Domain 1 uses six radiative scheme codes: (1) Dudhia-1sw & RRTM-1lw ; (2) Goddard-2sw & RRTM-1lw; (3) RRTMG-4 

sw & lw; (4) New Goddard-5 sw & lw; (5) FLG-7sw & lw; (6) GFDL-99sw & lw 
 

Domain 2 uses four radiative scheme codes:(1) Dudhia-1sw & RRTM-1lw ; (2) Goddard-2sw & RRTM-1lw; (3) FLG-7sw 
& lw; (4) GFDL-99sw & lw 

 

WRF MODEL SETUP – Radiative Schemes 

Planetary Boundary Layer (YSU Scheme), Microphysics (new Thompson except 
GFDL uses only Eta Ferrier), Cumulus (Kain Fritsch), Land surface model (Noah) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        Dust Storm 

22nd Sep  
(2 hourly 

shown) 

6 pm  

Difference 
in solar 
radiation 

2: WSM3, Hong, Dudhia and Chen (2004, MWR) 3: Thompson and Eidhammer (2014, JAS) 

8 am 

WRF 
Single 

Moment-3 
Class2 (Ice, 

Clouds, 
Snow) 

MICROPHYSICS 
(WSM-3 vs Thompson ) 

SHORTWAVE (Dudhia vs Goddard example) 

SIMULATIONS – Scheme Intercomparisons 

21st Sep 10 pm –  
22nd Sep 6 am 

8 am 

10 am 

12 pm 

22nd Sep 10 pm  
– 23rd Sep 6 am 

8 am 

12 pm 

10 am 

Thompson 
Aerosol 3 
GOCART 

Climatology 



48 Hours from 2009-02-07-00-00 UTC  

(for each climate zone over two domains) 
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RESULTS –  WRF NWP SOLAR FORECASTS   

DNI NWP 
produced 

much larger 
biases than 

GHI 

Over-prediction 
during bushfire in 

Melbourne 



D2 

(4 codes) 

Dust storm case Bushfire case 
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D1 

(6 codes) 

 DNI & GHI – NRMSE, MAE 
& MBE (Wm-2 average 

stacked contribution from 

other sites) also analysed 

 similar trends 

RESULTS – NWP FORECAST METRICS   

Significant difference in forecast error based on choice of 
scheme and location 

MUST post-process to reduce bias and 
evaluate the best multi-model ensemble 
radiative schemes for each site  

 Machine Learning 

Dudhia??? 48 Hours Lead Time 

D1 Scheme D2 
1 Dudhia 1 

2 Goddard 2 

3 RRTMG 

4 
New 

Goddard 

5 FLG 3 

6 GFDL 4 



Machine Learning with Boosted Decision Tree Regression3  

– BUSHFIRE CASE (48 Hours from 2009-02-07 00:00:00 UTC) 
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Training Data Point (Hour) 

X 

Y 

Measured 

Predicted 

LSBoost function 
MATLAB: Avg. Execution 
time 8.04s 

RMSE 
130 
W/m2 

RMSE 
158 
W/m2 

RMSE 
225 
W/m2 

RMSE 
119 
W/m2 

When 80% data 
for training set 
aside – gave 
lowest RMSE 

3: Friedman, J. Greedy function approximation : A gradient boosting machine. Annals of  Statistics, 2001 
   

LSBoost uses Least-
squares loss function 
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Radiative Schemes (predictors) for ensemble forecast 

Training 
set loss 

Test set 
loss 
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Trees 

Radiative Scheme Ensemble Learner – BUSHFIRE CASE 

X 

Y 

65 Decision 
Trees 

Goddard-
RRTM_D1 

Goddard-
RRTM_D1 

108 Decision 
Trees 
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Predictors 
X 

Y 

R
M

S
E

 

Trees 

R
M
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Trees 

54 Trees 

Goddard- 
RRTM_D2 

Dudhia-
RRTM_D1 

42 Trees 



Boosted Decision Tree Regression – DUST STORM CASE 
(48 hrs from 2009-09-21 12:00:00 UTC)  

Training Data Point (Hour) 
X 

D
N

I 
F

o
re

c
a
s
t 

W
m

-2
   

Measured 

Predicted 

Y 

70% Data 
training 
lowest 
RMSE 

90% data set aside for 
training gave lowest RMSE 

RMSE 
1.3 

RMSE 
24 

RMSE 
29.9 

RMSE 
1.5 

RMSE 
35.7 

Adel & Melb. 
no storm 



Radiative Scheme Ensemble Learner – DUST STORM CASE 

Predictors 
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LEGEND 

LS_Boost Avg. 
Execution 
time 8.6s  

GFDL 
_D2 

Dudhia 
-RRTM_D2 

FuLiouGu_D2 Dudhia 
-RRTM_D2 

RRTMG 



SUMMARY – Predictors from machine learning and NWP 

forecasts 

Koppen Classification Mediterranean Desert Semi-Arid Oceanic 
Humid 

Subtropical 

Location Adelaide 
Alice 

Springs Broome Melbourne Rockhampton 

Dust storm Case RMSE 
(W/m2)  - Sep '09 1.34 23.83 29.93 1.54 35.70 

Most important radiative 
scheme predictor GFDL_D2 

Dudhia-
RRTM_D2 

Dudhia-
RRTM_D2 

FuLiouGu_D
2 RRTMG 

No. of Decision Trees 44 150 89 67 119 

Bushfire Case RMSE  
(W/m2) - Feb '09 No ground data 129.97 157.82 225.32 118.51 

Most important radiative 
scheme predictor N/A 

Goddard-
RRTM_D1 

Goddard-
RRTM_D1 

Dudhia-
RRTM_D1 

Goddard-
RRTM_D2 

No. of Decision Trees N/A 108 65 42 54 

Dust storm Case RMSE 
(W/m2)  - Sep '09 2.6 40.4 2.3 1.8 1.3 

Most important radiative 
scheme predictor GFDL_D2 

Dudhia-
RRTM_D1 

Dudhia-
RRTM_D2 

Dudhia 
_RRTM_D1 

Dudhia_RTM_D
1 

Bushfire Case RMSE  
(W/m2) - Feb '09 No ground data 100.8 84.3 157 84.3 

Most important radiative 
scheme predictor N/A 

Goddard-
RRTM_D1 

Dudhia-
RRTM_D2 

Goddard-
RRTM_D1 

Goddard-
RRTM_D2 

GHI 

DNI 



 Overall, Dudhia-RRTM for dust and fire seem to be the most consistent 

predictor for DNI in Australia from this study (without aerosol input)  

 Results in Feb gave higher RMSE than in Sep. 

 Goddard-RRTM seems to produce better results in February than September 

at non-major aerosol event sites 

 GFDL gave better prediction for [Mediterranean zone] Adelaide (no ground 

data in Feb) 

 RRTMG must be tested with aerosol input, without YSU/KF scheme and run 

at higher resolutions alongside (10KM) CAM scheme  

 Further shortwave ensemble performance evaluation with other PBL and 

cumulus schemes using Thompson required 

CONCLUSIONS 

• In Evans et al. 36 member ensemble test, YSU-KF-
RRTMG also ranked below YSU-KF-Dudhia 

• MYG-KF-WDM5-Dudhia ranked highest followed by  
• However, RRTMG with other PBL & Cu schemes 

ranked higher than with YSU-KF used in this study 

Other WRF ensemble test 
literature supporting 

conclusions: Evans, 2011, Climate 
Dynamics, Evaluation of a WRF 

Physics Ensemble over South-East 
Australia 
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