AUSTRALIA

Never Stand Still

Towards a More Accurate Machine
Learning Multi-Model Ensemble Method

for Direct Solar Irradiance Forecasts

Faculty of Engineering School of Photovoltaic and Renewable Energy Engineering

S. Karthik Mukkavilli

Merlinde J. Kay (UNSW)
Abhnil A. Prasad (UNSW)
Robert A. Taylor (UNSW)
Alberto Troccoli (CSIRO)




MOTIVATION

SOLAR FORECAST - importance of accuracy
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BACKGROUND

PREVIOUS STUDY!? - revealed that AEROSOL EVENTS in some

REGIONS are particularly IMPORTANT for SOLAR forecasts

DNI variability

Latitude
Latitude

Variability in AOD anomaly

Variability in DNI anomaly (W/m?2)

15 120 125 130 135 140 145 150

Longitude Longitude

Gridded monthly AOD data at 550 nm
from MODIS Terra (2000-2012)

* Spatial resolution of 1° (=111 km)
Accuracy of + 15 %

* Gridded hourly solar DNI ground data (2000-
2012)

* Spatial resolution of 0.05° (=5 km)
* Accuracy of £ 20 Wm™

* Variability is due to clouds & aerosols

1: Prasad A. et al. (2014), Assessment of DNI-cloud connections using satellite data over Australia, Applied Energy (under review)



BACKGROUND

Correlation of Deseasonalised
DNI and AOD anomaly

(~0.03-0.05) in
the AOD.
Most of these regions
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The total change in AOD and DNI was within + 0.1 and + 40 Wm<2 respectively over
Australia for the period of this study.

The AOD anomaly significantly decreased over northern Australia which may have
led to the increase in DNI over the period.

These spatio-temporal characteristics of AOD and DNI variability would help in siting
future CSP installations in Australia.



EVENT CASE STUDIES

BUSHFIRE

Forecast Horizon: 48 Hours from
2009-02-07-00-00-00 UTC
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— 2009 Australian Dust Storm e ..

from 2009-09-21-12-00-00 UTC

GFS boundary conditions and NCEP final

operational analysis global data at 1 degree grids
every six hours.

WRF MODEL SETUP
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WRF MODEL SETUP — Radiative Schemes

Fast & simple downward
broadband calculation

Dudhia Dudhia (1989, JAS) (cloud albedo & absorption)
Chou and Suarez (1994, NASA Tech

Goddard Memo) Spectral Method (clouds)

Spectral method (14 bands,
RRTMG lacono et al. (2008, JGR) clouds, aerosols)

Chou and Suarez (1999, NASA Tech ~ ~Pec!"™ Method 1 bands
New Goddard Memo)
Gu et al. (2011, JGR), Fu and Liou (1992,
FLG JAS) Correlated k-distribution

GFDL Fels and Schwarzkopf (1981, JGR) Spectral scheme (cloud s)

Planetary Boundary Layer (YSU Scheme), Microphysics (new Thompson except
GFDL uses only Eta Ferrier), Cumulus (Kain Fritsch), Land surface model (Noah)

(sw:shortwave & lw:longwave)

: (1) Dudhia-1sw & RRTM-1lw ; (?) Goddard-2sw & RRTM-1lw; (2) RRTMG-4
sw & lw; (4) New Goddard-5 sw & Iw; (5) FLG-7sw & lw; (©) GFDL-99sw & Iw

:(1) Dudhia-1sw & RRTM-1lw ; (?) Goddard-2sw & RRTM-1Iw; (3) FLG-7sw
& lw; (4) GFDL-99sw & Iw




SIMULATIONS - Scheme Intercomparisons

MICROPHYSICS SHORTWAVE (Dudhia vs Goddard example)

(WSM-3 vs Thompson )
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2: WSM3, Hong, Dudhia and Chen (2004, MWR) 3: Thompson and Eidhammer (2014, JAS)



BUSHFIRES - 10KM DNI
(example for 2 locations shown)

RESULTS — WRF NWP SOLAR FORECASTS
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RESULTS — NWP FORECAST METRICS

Bushfire case Dust storm case
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Machine Learning with Boosted Decision Tree Regression3
— BUSHFIRE CASE (48 Hours from 2009-02-07 00:00:00 UTC)
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3: Friedman, J. Greedy function approximation : A gradient boosting machine. Annals of Statistics, 2001



Radiative Scheme Ensemble Learner —- BUSHFIRE CASE
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Radiative Schemes (predictors) for ensemble forecast
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Boosted Decision Tree Regression — DUST STORM CASE
(48 hrs from 2009-09-21 12:00:00 UTC)
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2 oogAs no storm training gave lowest RMSE




Radiative Scheme Ensemble Learner —- DUST STORM CASE
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SUMMARY - Predictors from machine learning and NWP
forecasts

Humid
Subtropical

Alice
Adelaide Broome

Koppen Classification Oceanic

Location Springs Rockhampton
DNI Dust storm Case RMSE
(W/m?2) -Sep '09 1.34 23.83 29.93 1.54 35.70
Most important radiative Dudhia- Dudhia- FulLiouGu_D
scheme predictor GFDL_D2 RRTM_D2 RRTM_D2 2 RRTMG
No. of Decision Trees 44 150 89 67 119
No ground data 129.97 157.82 118.51
Goddard- Goddard- Goddard-
N/A RRTM_D1 RRTM_D1 RRTM_D2
No. of Decision Trees N/A 108 65 42 54
GHI Dust storm Case RMSE
(W/m2) -Sep '09 2.6 40.4 2.3 1.8 1.3
Most important radiative Dudhia- Dudhia- Dudhia Dudhia_RTM_D
scheme predictor GFDL_D2 RRTM_D1 RRTM_D2 _RRTM_D1 1
No ground data 100.8 84.3 - 84.3
Goddard- Dudhia- Goddard-
N/A RRTM_D1 RRTM_D2 RRTM_D2




CONCLUSIONS

O Overall, Dudhia-RRTM for dust and fire seem to be the most consistent
predictor for DNI in Australia from this study (without aerosol input)

O Results in Feb gave higher RMSE than in Sep.

O Goddard-RRTM seems to produce better results in February than September
at non-major aerosol event sites

O GFDL gave better prediction for [Mediterranean zone] Adelaide (no ground
data in Feb)

0 RRTMG must be tested with aerosol input, without YSU/KF scheme and run

at higher resolutions alongside (10KM) CAM scheme
O Further shortwave ensemble performance evaluation with other PBL and
cumulus schemes using Thompson required

Other WRF ensemble test
literature supporting
conclusions: Evans, 2011, Climate
Dynamics, Evaluation of a WRF
Physics Ensemble over South-East
Australia

In Evans et al. 36 member ensemble test, YSU-KF-
RRTMG also ranked below YSU-KF-Dudhia
MYG-KF-WDM5-Dudhia ranked highest followed by
However, RRTMG with other PBL & Cu schemes
ranked higher than with YSU-KF used in this study
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