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1.  Background and Motivation
Lightning is widely associated with severe weather, but it also plays other roles in the Earth 

system.  Lightning is energetic enough to break the chemical bonds of molecular nitrogen and 

oxygen, and is important to atmospheric chemistry through the nitrogen biogeochemical cycle 

(e.g. Levy et al. 1996; Price et al. 1997).  Lightning also acts as essentially the only natural 

ignition source for fires (Flannigan et al. 2009; Pechony and Shindell 2009; Price and Rind 

1994), which are a component of the Earth’s carbon cycle.  

While lightning is an important phenomenon in the Earth system, global climate models do not 

directly simulate the process of lightning initiation and discharge.  Atmospheric chemistry 

models, which are critical components of global climate models (e.g. Fiore et al. 2012), require 

lightning to simulate the natural formation of nitrogen oxides (Price et al. 1997) and rely on 

climatologies of lightning from satellite-based data sets of lightning or empirically-derived 

lightning parameterizations (Allen and Pickering 2002).  Global fire models rely almost entirely 

on monthly climatologies of lightning from satellite-based data sets (Kloster et al. 2010; Li et al. 

2012; Pechony and Shindell 2009).  Diverse communities of researchers, such as those in 

atmospheric chemistry, global fire modeling, and even paleoclimatology would benefit 

from methods to estimate past and future spatiotemporal patterns of lightning.

Global climate models simulate many parameters related to convection, including total 

precipitation rate (Figure 1), convective precipitation rate, and convective mass flux.  

Theoretical, field, and higher resolution modeling studies of thunderstorm dynamics have found 

that the product of the upward and downward mass flux of ice in the presence of supercooled 

water is related to lightning flash rate (Blyth et al. 2001; Deierling et al. 2008).  Thus, there is a 

physical basis for exploring relationships among simulated convective parameters and 

observed lightning.
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3.  Research Objective
Based on the Background and initial analysis of the Datasets, this study combines satellite observations of lightning and 

CMIP5 climate model simulations to derive an empirical non-linear parameterization of lightning in terms of simulated 

convective parameters.  The spatial scale is 2.0 x 2.5 degrees.  The temporal scale is monthly.  

4.  Methods
To address the objective, begin by breaking the 

problem into land and ocean since convective 

regimes are expected to be distinct (Williams and 

Stanfill, 2002), and corresponding OTD/LIS 

lightning data corroborates this (Cecil et al., 2012).  

Evaluate how lightning over land and ocean (L-

land and L-ocean) are related to total 

precipitation over land and ocean (P-land, P-

ocean), convective precipitation over land and 

ocean (C-land, C-ocean), and convective mass flux 

over land and ocean (M-land, M-ocean).  Bin the 

data into evenly-distributed bins and evaluate.

Calculate the mean and various percentiles for the 

values of each model in each bin for all convective 

parameters (Figure 4).  From these binned 

values, calculate the multi-model median (black 

line in Figure 4).  The relationship of L-land 

and P-land for both models and GPCP are very 

similar, lending weight to the ability of models to 

capture precipitation over land (Figure 1).  

Although not shown, other percentiles in the bins 

are similar but displaced.  Ocean comparisons are 

not shown, but summary evaluations are shown in 

Table 1.

The multi-model median of the mean (Figure 4) 

and percentiles are shown in Figure 5, along with 

GPCP in the case of P-land.   The spread in 

statistical values is similar to uncertainty, but this 

must be judged relative to Figure 2.  

Following previous studies about lightning parameterization (Allen and Pickering, 2002), a 5th

degree polynomial is fit to the multi-model median values in Figure 4 (black line)
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where L is the monthly lightning flash rate density (flashes km-2 month-1) and X is one of either P 

(mm day-1), C (mm day-1), or M (kg m-2 hour-1) for land or ocean grid cells, and a1 through a5 are 

the fit coefficients (Table 1). P and C are the monthly averaged values, while M is the monthly 

value through the 0.44 hybrid-sigma pressure level in the various models.  This value of M serves as an 

indicator of deep convection, and corresponds to ~427 hPa.  

input variable a1 a2 a3 a4 a5

P-land (mm day-1) 1.43E-01 8.01E-02 -1.52E-02 9.11E-04 -1.82E-05

C-land (mm day-1) 6.54E-01 -2.86E-02 -9.63E-03 1.01E-03 -2.69E-05

M-land (kg m-2 hour-1) 1.31E-01 -1.93E-03 8.87E-05 -6.84E-06 1.17E-07

P-ocean (mm day-1) 3.26E-02 -7.16E-03 1.02E-03 -7.31E-05 1.93E-06

C-ocean (mm day-1) 5.11E-02 -1.04E-02 1.09E-03 -5.66E-05 1.17E-06

M-ocean (kg m-2 hour-1) 1.06E-02 6.71E-04 -8.58E-05 2.41E-06 -1.97E-08

5.  Results
Convective mass flux best captures the spatiotemporal distribution of observed lightning (Figure 

6).  Derived lightning seasonality is captured with 95% confidence over 69% of land, but only 

30% of ocean.  Spatially, the correlation of derived lightning and observed lightning is 0.74.  

Overall, global observations suggest lightning occurs at an annual rate of 47 flashes s-1, while 

lightning from the parameterization occurs at 44 flashes s-1. The parameterization works 

considerably better over land.  Also, as would be expected from a parameterization developed 

from average lightning, the parameterization tends to underpredict lightning over regions with the 

highest flash rates and overpredicting lightning for regions with the lowest flash rates.

Comparisons with a previous parameterization (Figure 7) suggest that the new 

parameterization against convective parameters such as C and M from CMIP5 models are a 

significant improvement, both in magnitude and seasonality. 

A robust feature of the relationship between lightning and climate model convective parameters is 

that lightning flash rate increases linearly (Figures 4-5) with increases in C and M for a 

significant subset of the total range (Figure 2) of those convective parameters.  Namely, this 

linear proportionality is evident when C < 4-5 mm day-1 and M < 15-16 kg m-2 hour-1, which 

account for about 90% of the values simulated by the climate models.

2.  Satellite and Model Datasets
Lightning:  Global flash rates are from the Optical Transient Detector (OTD) (Christian et al. 

2003) and the Lightning Imaging Sensor (LIS) (Boccippio et al. 2002), the latter of which is on 

the NASA Tropical Rainfall Measurement Mission (TRMM) (Kummerow et al. 2000) satellite.  

This study uses the mean monthly climatology dataset (LISOTD_HRMC_V2.3, 0.5° x 0.5° spatial 

resolution) available at http://thunder.nsstc.nasa.gov/, which is a combination of OTD data 

(available globally from 1995-2000) and LIS data (available between 38°S and 38°N latitude 

from 1998-present) (Cecil et al. 2012).

Precipitation:  Observations are from the monthly Global Precipitation Climatology Project 

(GPCP) version 2.2 (Adler et al. 2003; Huffman et al. 2009), which merges data from multiple 

satellite-based sensors and sounders with ground-based rain gauge data.  The merged data 

product is available at 2.5° x 2.5° spatial resolution from http://precip.gsfc.nasa.gov/.  In this 

study, GPCP is used to evaluate whether climate models are capturing the spatiotemporal 

patterns in total precipitation (Figure 1).

Climate model fields:  Simulated total precipitation (P), convective precipitation (C), and 

convective mass flux (M) are from climate models that contributed to the Coupled Model 

Intercomparison Project Phase 5 (CMIP5, http://cmip-pcmdi.llnl.gov/cmip5/) data archive.  

CMIP5 (Taylor et al. 2012) is a coordinated effort among international climate modeling 

groups to simulate past, present, and future climate to better understand the response of the 

climate system to human and natural perturbations to energy balance.  CMIP5 model output 

forms the basis for the Intergovernmental Panel on Climate Change Fifth Assessment Report 

(IPCC 2013) working group reports.  P, C, and M are investigated for ocean and land-based grid 

cells separately.
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Figure 1.  Comparisons of observed 

precipitation rates from GPCP and 

simulated by CMIP5 climate models 

used in this study for (a) all grid cells, 

(b) land grid cells, and (c) ocean grid 

cells.  The filled, colored circles each 

represent the absolute value of the 

difference between mean annual 

precipitation (MAP) rate from one of 

the climate models and GPCP.  The 

larger the circle, the larger the 

difference from GPCP.  The average 

difference is shown with a patterned 

fill, and the size of this circle is 

quantified in the inset.  The spatial 

correlation is calculated from a 

comparison of the MAP from GPCP and 

from each climate model.  The 

temporal correlation is calculated as a 

comparison of the mean monthly 

precipitation from GPCP and from each 

climate model.  A near-perfect match 

to GPCP would have a very small circle 

diameter, and the circle would be 

located in the upper right quadrant.

Figure 3.  Spatial correlation coefficient between 

observed lightning flash rate density from OTD/LIS, 

observed precipitation from GPCP, and precipitation, 

convective precipitation, and convective mass fluxes 

simulated by CMIP5 climate models used in this study.  

Comparisons are presented for (a) land and (b) ocean 

grid cells.  High spatial correlation coefficients indicate 

that the location of lightning and the corresponding 

comparison fields are similar.

Figure 2.  Average 

cumulative frequency 

of occurrence for 

values of P-land, P-

ocean, C-land, C-

ocean, M-land, and 

M-ocean from the 

climate models, and 

P-land and P-ocean 

from GPCP.

Figure 4.  The mean relationship between mean monthly L-land (flashes 

km-2 month-1) and binned precipitation for (a) P-land (mm day-1), (b) C-

land (mm day-1), and (c) M-land (kg m-2 hour-1).  The multi-model 

median line (thick line black) is based on the values from the individual 

climate models listed in the legend.  The mean value of from the GPCP 

observationally-based P-land dataset (thick red line) is also shown.

Initial comparisons:  Re-grid all datasets to a 2.0 x 2.5 degree latitude x 

longitude grid.  Then evaluate the data over land and ocean grid cells, 

with variables labeled accordingly.

What are the most common values? Figure 2 shows the distribution 

of total precipitation (P-land, P-ocean), convective precipitation (C-land, 

C-ocean), and convective mass flux (M-land, M-ocean).  P and C tend to 

depend on land or ocean, while M from models does not.  This 

distribution is useful when assessing uncertainty.

Which convective parameters are related to lightning? Statistical 

comparisons of lightning (L-land, L-ocean) from OTD/LIS are shown in 

Figure 3.  Lightning is much more closely related to land-based 

parameters, and most directly with M-land.  At least, in the linear model.

6.  Conclusions
This presentation focuses on the methods, findings, and ways that satellite data and CMIP5 model output 

could further be used to understand past, present, and future spatiotemporal distributions of global lightning. 

The parameterization is immediately relevant to communities of global climate modelers.  Paleo, historical, 

and projection studies using climate models can all take advantage of the results to create simulated lightning 

maps for studies of the time history of lightning distributions and at least relative changes in magnitude.  The 

linearity found in this study suggests that any changes in convective precipitation and convective mass flux in 

the future would result in lightning flash rates that change proportionally.  This linearity could be a valuable 

way to assess future lightning distributions suggested by climate model projections of convective parameters 

such as convective mass flux.

Figure 5. The mean and statistical percentiles of the range of values of 

L-land (flashes km-2 month-1) for each value of (a) P-land (mm day-1), 

(b) C-land (mm day-1), and (c) M-land (kg m-2 hour-1).  The multi-model 

median is shown in shades of black, GPCP is the dark grey solid line 

near the mean values curve in (a).  The polynomial parameterizations 

(e.g. Equation and Table 1) for each percentile are overlaid as a 

dashed lines.

Table 1. Fit coefficients for the empirical model for mean lightning flash rate density that 

occurs as a function of total precipitation (P), convective precipitation (C), or convective mass 

flux (M) over land (P-land, C-land, M-land) and ocean (P-ocean, C-ocean, M-ocean). The 

output is monthly lightning flash rate density (flashes km-2 month-1).

Figure 6. Maps of mean annual lightning flash density (flashes km-2 month-1) from (a) 

OTD/LIS, (b) the parameterization based on C-land and C-ocean, and (c) the 

parameterization based on M-land and M-ocean.  Also shown are maps of seasonal 

correlation coefficients between OTD/LIS mean monthly lightning and (d) parameterized 

lightning based on C-land and C-ocean and (e) parameterized lightning based on M-land 

and M-ocean.  Statistics at the top of the lightning maps (a, b, c) are the mean annual 

flash rates for the globe, land, and ocean (flashes s-1), and the spatial correlation 

coefficient for globe, land, and ocean between OTD/LIS and the derived lightning maps in 

b and c.  The statistics at the top of d and e are the spatially-averaged mean seasonal 

correlation coefficients for the globe, land, and ocean.

Figure 7. Mean monthly total (land and ocean) lightning flash rates (flashes s-1) from OTD/LIS (black 

line), the lightning parameterizations using C-land and C-ocean (red solid line) and M-land and M-ocean 

(blue solid line), and lightning parameterizations from Allen and Pickering (2002) using convective 

precipitation (red dashed line) and convective mass flux (blue dashed line).  Also shown are the 1996 

OTD lightning averages from Allen and Pickering (2002).  The averages are shown for regions of interest.


