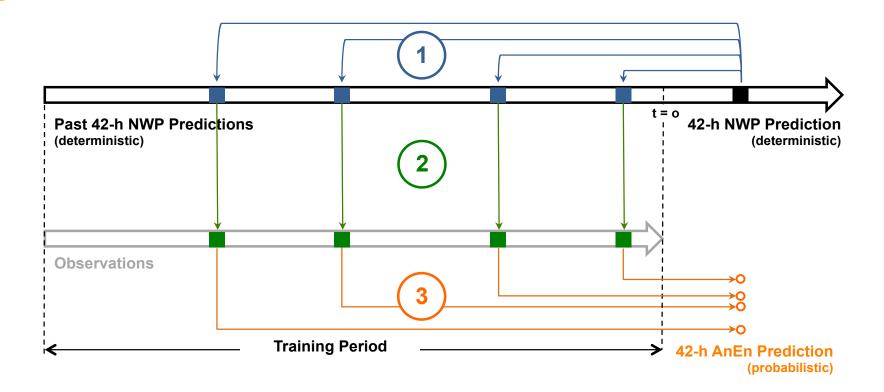


F. Anthony Eckel

Microsoft, Bellevue, WA


Luca Delle Monache

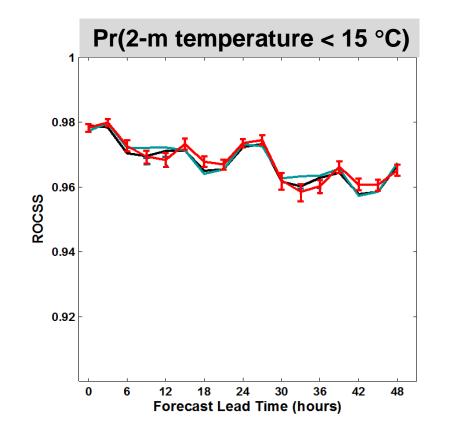
National Center for Atmospheric Research, Boulder, CO

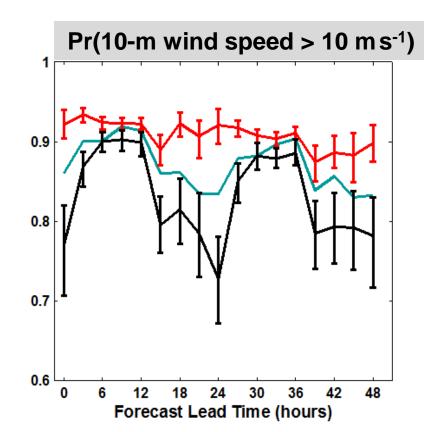
Analog Ensemble* (AnEn)

From today's model forecast, find *n* similar past predictions by the same model
 Obtain the verifying observation from each analog
 Each observation is an ensemble member for today's forecast

*Luca Delle Monache, F. Anthony Eckel, Daran L. Rife, Badrinath Nagarajan, and Keith Searight, 2013: **Probabilistic Weather Prediction with an Analog Ensemble**, *Mon. Wea. Rev.*, **141**, 3498–3516.

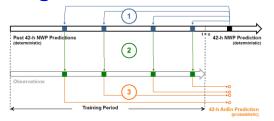
Delle Monache et al. (2013) Results

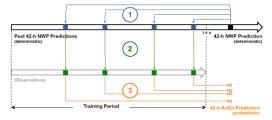

AnEn: Analog Ensemble


LR: Logistic Regression

EMOS: Ensemble MOS

Used deterministic, higher-resolution model forecast


Used 21-member NWP ensemble of lowerresolution model forecasts, **at ~2× the cost**



Hybrid NWP-Analog Ensemble (HyEn)

analog ensemble w/ REPS #1

analog ensemble w/ REPS #2

analog ensemble w/ REPS #3

analog ensemble w/ REPS #4

<u>NWP Ensemble</u> – dynamically capture flow- dependent error growth

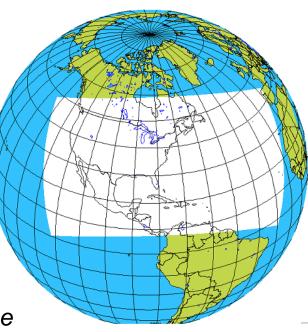
...and then...

HyEn

<u>Analog Members</u> – provide additional sampling, and down-scaling calibration

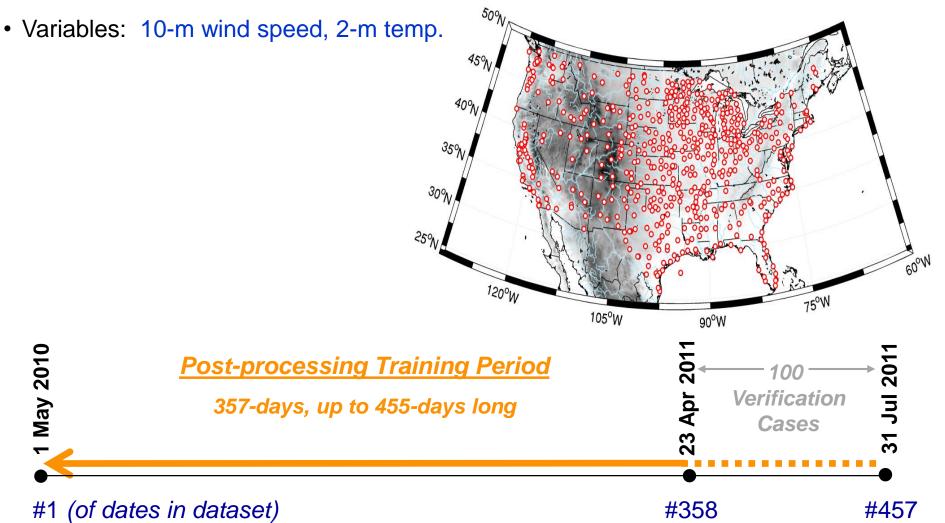
Sampling Strategy?

Forecast Data


High-res Regional Global Environment Multiscale (GEM)

- Model: GEM 4.2.0
- Grid Spacing: ~15 km

Regional Ensemble Prediction System (REPS*)


- Model: GEM 4.2.0
- Grid Spacing: ~33 km
- Forecasts: Used only 12Z cycle, 0 to 48-h lead time
- # of Members: Used only 10 (of 21)
- Initial & Boundary Conditions: 21-member Global EPS
- Stochastic Physics: Markov Chains on physical tendencies

*Li, X., M. Charron, L. Spacek, and G. Candille, 2008: A regional ensemble prediction system based on moist targeted singular vectors and stochastic parameter perturbations. *Mon. Wea. Rev.*, **136**, 443–462.

Ground Truth Data

- Locations: 550 hourly METAR Surface Observations within CONUS
- Period: ~15 months,1 May 2010 31 July 2011

Member Selection: Repeat vs. No-Repeat

-0

Cycle

12Z on June 4, 2011 (Date **#401**)

Location

KSEA (SeaTac Apt., WA)

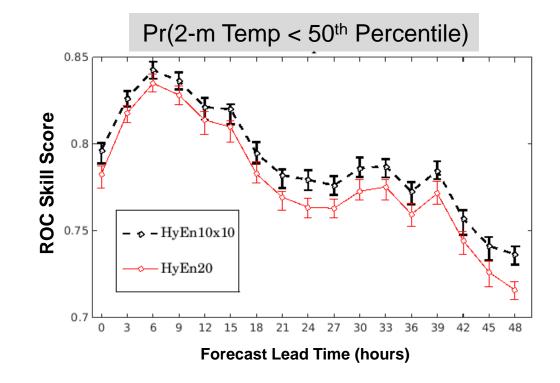
Lead Time

36-h

Variable

2-m Temperature

Analog Date #			<u>Analo</u>	<u>g Ran</u>	$k \rightarrow$				
Date	Ħ	1	2	3	4	5	6	7	8
	1	91	109	100	74	52	56	110	49
REPS Member #	2	72	147	127	153	123	49	110	120
	3	58	56	72	51	99	73	101	97
	4	73	87	98	64	72	82	94	99
	5	100	97	98	47	78	72	112	94
	6	369	31	121	131	63	64	62	29
	7	110	153	147	54	124	93	399	152
EP	8	93	72	92	73	110	52	78	99
R_{I}	9	120	110	127	36	98	58	148	146
	10	82	53	73	72	36	52	99	55


II--II-- 10. .7

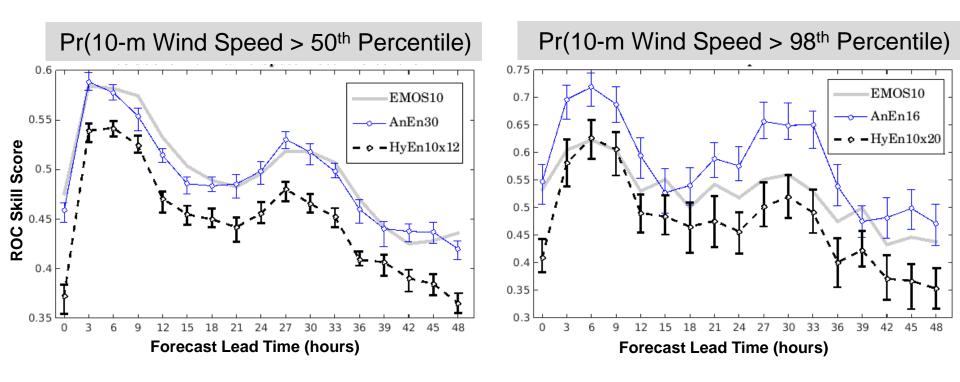
HyEn40
(No-Repeat members)

								дН у	Enio×7
verifyin Obs. (°	g							\sim	
ohs.		1	2	3	4	5	6	7	8
REPS Member #	1	20	21	19	26	23	18	19	13
	2	18	23	17	17	21	13	19	17
	3	20	18	18	17	21	21	21	18
	4	21	25	17	16	18	18	23	<u>21</u>
	5	19	18	17	16	18	18	21	23
	6	14	16	21	16	19	16	17	14
	7	19	17	23	23	24	22	25	22
	8	22	18	19	21	19	23	18	<u>21</u>
	9	17	19	17	16	17	20	17	<u> 19</u>
	10	18	24	21	18	16	23	21	18

Member Selection: Repeat vs. No-Repeat

✓ Allowing repeat (auto-weighted) members works best

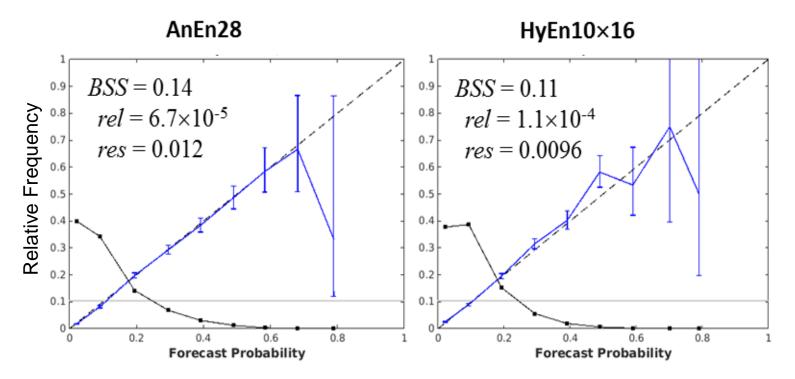
10-m Wind Speed Results


AnEnφ: Analog Ensemble φ (*optimal*) members

EMOS10: Ensemble MOS using ensemble mean & spread

HyEn10× γ : Hybrid Ensemble γ (*optimal*) analogs on each NWP mbr

____ Used deterministic, higher-resolution model forecast


Used 10 members from NWP
ensemble of lower-resolution model forecasts, at ~same cost

10-m Wind Speed Results

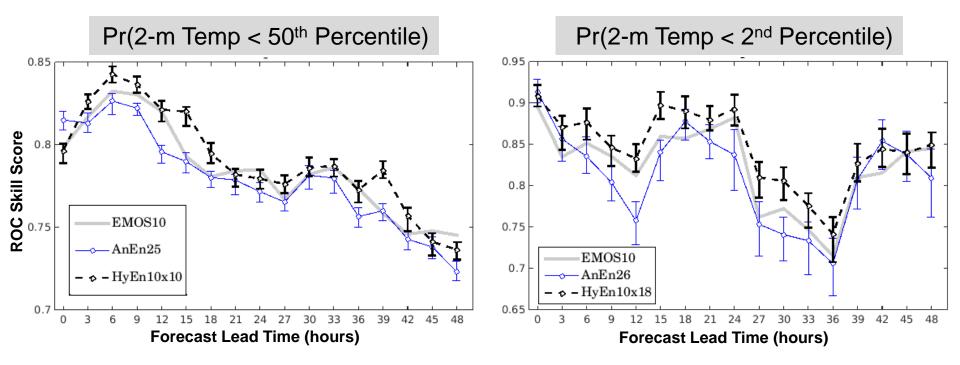
10-m Wind Speed ≥ 90th percentile

30-h Lead Time

Somewhat overdispersive (too much spread)

rel & res worse than AnEn

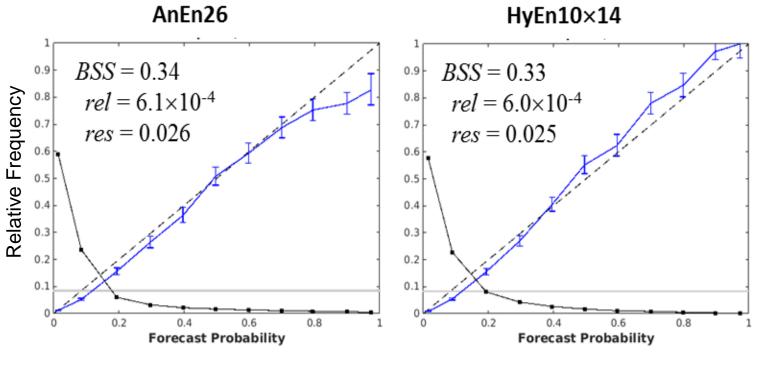
2-m Temperature Results


AnEnφ: Analog Ensemble φ (*optimal*) members

EMOS10: Ensemble MOS using ensemble mean & spread

HyEn10× γ : Hybrid Ensemble γ (*optimal*) analogs on each NWP mbr

 Used deterministic, higher-resolution model forecast


Used 10 members from NWP
ensemble of lower-resolution model forecasts, at ~same cost

2-m Temperature Results

2-m Temperature ≤ 10th percentile

30-h Lead Time

overdispersive (too much spread)

rel & res on par with AnEn

Conclusions

HyEn – may be too unreliable?

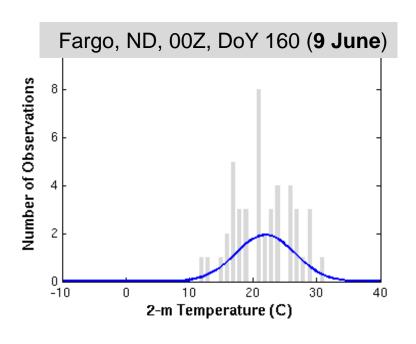
- Can out perform AnEn, perhaps when the NWP members simulate flowdependent uncertainty well
- Unpredictably prone to being less sharp and overdispersive

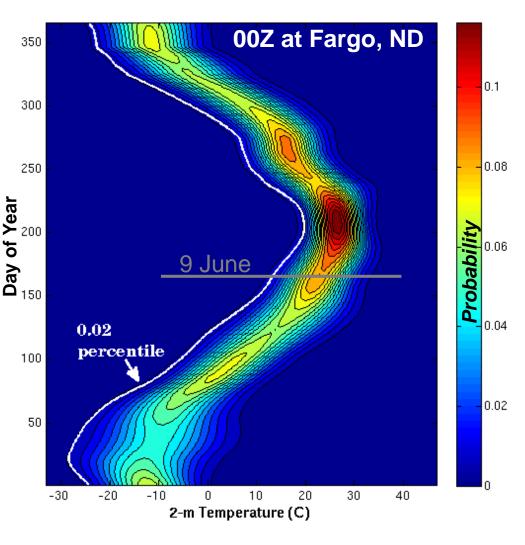
AnEn – likely best method moving forward, due to its advantages

- Straightforward approach more easy to tune and improve
- Enables use of higher-resolution NWP
- Better opportunity for longer training dataset

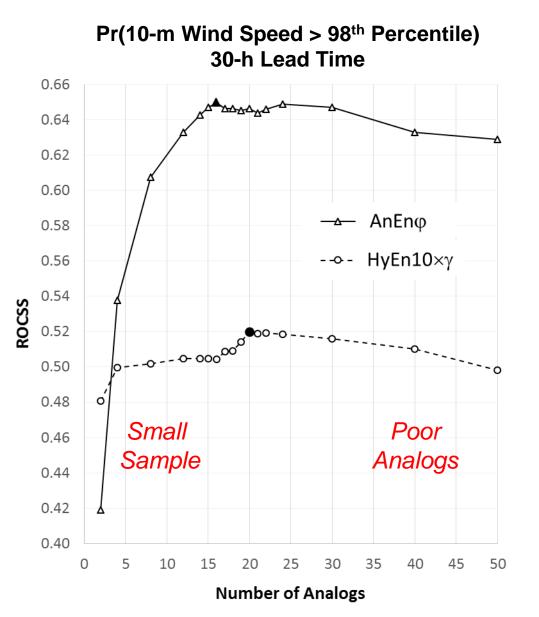
Ongoing Investigation (of AnEn & HyEn)

- Expand performance analysis with more data, more variables, more seasons, etc.
- Try HyEn on a multi-model NWP ensemble
- Improve analog approach
 - Tune analog metric to make best use of more predictors
 - Make # of analogs adaptive to current forecast situation, rather than based on rarity of the probabilistic event threshold




Finding Climate Percentiles

<u>Goal</u>: Climate PDFs, for the research dataset, stratified by:


- Location
- Day of year (DoY)
- Time of day

<u>Method</u>: Using the 15 months of obs., fit all obs. within 15 days of the DoY to an assumed PDF

Empirical Optimization of # of Members

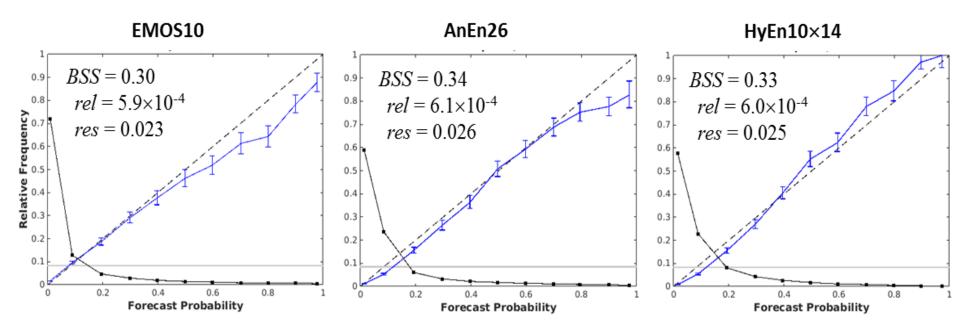
Optimal # of Member	'S
----------------------------	----

	50 th	90 th	98 th
AnEn <mark>φ</mark>	30	28	16
HyEn10×γ	12	16	20

10-m Wind Speed Results

10-m Wind Speed ≥ 90th percentile

30-h Lead Time


Somewhat overdispersive (too much spread)

rel & res worse than AnEn

2-m Temperature Results

2-m Temperature ≤ 10th percentile

30-h Lead Time

Somewhat underdispersive (not enough spread)

rel & res on par with AnEn